Suppr超能文献

基于最小均方自回归模型的脑电图振荡相位信息视觉刺激实时实现

Real-Time Implementation of EEG Oscillatory Phase-Informed Visual Stimulation Using a Least Mean Square-Based AR Model.

作者信息

Shakeel Aqsa, Onojima Takayuki, Tanaka Toshihisa, Kitajo Keiichi

机构信息

CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako 351-0198, Japan.

Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.

出版信息

J Pers Med. 2021 Jan 11;11(1):38. doi: 10.3390/jpm11010038.

Abstract

It is a technically challenging problem to assess the instantaneous brain state using electroencephalography (EEG) in a real-time closed-loop setup because the prediction of future signals is required to define the current state, such as the instantaneous phase and amplitude. To accomplish this in real-time, a conventional Yule-Walker (YW)-based autoregressive (AR) model has been used. However, the brain state-dependent real-time implementation of a closed-loop system employing an adaptive method has not yet been explored. Our primary purpose was to investigate whether time-series forward prediction using an adaptive least mean square (LMS)-based AR model would be implementable in a real-time closed-loop system or not. EEG state-dependent triggers synchronized with the EEG peaks and troughs of alpha oscillations in both an open-eyes resting state and a visual task. For the resting and visual conditions, statistical results showed that the proposed method succeeded in giving triggers at a specific phase of EEG oscillations for all participants. These individual results showed that the LMS-based AR model was successfully implemented in a real-time closed-loop system targeting specific phases of alpha oscillations and can be used as an adaptive alternative to the conventional and machine-learning approaches with a low computational load.

摘要

在实时闭环系统中,使用脑电图(EEG)评估瞬时脑状态是一个技术上具有挑战性的问题,因为需要预测未来信号来定义当前状态,例如瞬时相位和幅度。为了实时完成这一任务,已经使用了基于传统尤尔-沃克(YW)的自回归(AR)模型。然而,尚未探索采用自适应方法的闭环系统在脑状态依赖下的实时实现。我们的主要目的是研究基于自适应最小均方(LMS)的AR模型进行时间序列前向预测是否可在实时闭环系统中实现。在睁眼静息状态和视觉任务中,EEG状态依赖触发器与α振荡的EEG峰值和谷值同步。对于静息和视觉条件,统计结果表明,所提出的方法成功地在所有参与者的EEG振荡特定相位给出了触发器。这些个体结果表明,基于LMS的AR模型在针对α振荡特定相位的实时闭环系统中成功实现,并且可以作为传统方法和机器学习方法的低计算量自适应替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bcf/7828009/3adc68fdbbc0/jpm-11-00038-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验