Suppr超能文献

基于噪声辅助的多变量经验模态分解的平均相位相干性分析用于评估癫痫患者的相位同步动力学。

Noise-Assisted Multivariate EMD-Based Mean-Phase Coherence Analysis to Evaluate Phase-Synchrony Dynamics in Epilepsy Patients.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2270-2279. doi: 10.1109/TNSRE.2018.2881606. Epub 2018 Nov 15.

Abstract

Spatiotemporal evolution of synchrony dynamics among neuronal populations plays an important role in decoding complicated brain function in normal cognitive processing as well as during pathological conditions such as epileptic seizures. In this paper, a non-linear analytical methodology is proposed to quantitatively evaluate the phase-synchrony dynamics in epilepsy patients. A set of finite neuronal oscillators was adaptively extracted from a multi-channel electrocorticographic (ECoG) dataset utilizing noise-assisted multivariate empirical mode de-composition (NA-MEMD). Next, the instantaneous phases of the oscillatory functions were extracted using the Hilbert transform in order to be utilized in the mean-phase coherence analysis. The phase-synchrony dynamics were then assessed using eigenvalue decomposition. The extracted neuronal oscillators were grouped with respect to their frequency range into wideband (1-600 Hz), ripple (80-250 Hz), and fast-ripple (250-600 Hz) bands in order to investigate the dynamics of ECoG activity in these frequency ranges as seizures evolve. Drug-refractory patients with frontal and temporal lobe epilepsy demonstrated a reduction in phase-synchrony around seizure onset. However, the network phase-synchrony started to increase toward seizure end and achieved its maximum level at seizure offset for both types of epilepsy. This result suggests that hyper-synchronization of the epileptic network may be an essential self-regulatory mechanism by which the brain terminates seizures.

摘要

神经元群体之间同步动力学的时空演化在正常认知处理以及癫痫发作等病理状态下解码复杂脑功能方面起着重要作用。在本文中,提出了一种非线性分析方法来定量评估癫痫患者的相位同步动力学。利用噪声辅助多变量经验模态分解(NA-MEMD),从多通道脑电描记图(ECoG)数据集中自适应地提取一组有限的神经元振荡器。然后,使用希尔伯特变换提取振荡函数的瞬时相位,以便用于平均相位相干分析。然后使用特征值分解评估相位同步动力学。提取的神经元振荡器根据其频率范围分组为宽带(1-600 Hz)、纹波(80-250 Hz)和快速纹波(250-600 Hz)带,以研究这些频率范围内 ECoG 活动的动力学随着癫痫发作的进展。具有额颞叶癫痫的耐药性患者在癫痫发作开始时表现出相位同步性降低。然而,对于两种类型的癫痫,网络相位同步性开始在癫痫发作结束时增加,并在癫痫发作结束时达到最大值。这一结果表明,癫痫网络的超同步可能是大脑终止癫痫发作的重要自调节机制。

相似文献

5
Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain.评估大脑中非线性非平稳振荡器的瞬时同步。
J Neurosci Methods. 2010 Jan 30;186(1):42-51. doi: 10.1016/j.jneumeth.2009.10.023. Epub 2009 Nov 10.
10
Network dynamics of the brain and influence of the epileptic seizure onset zone.大脑的网络动力学与癫痫发作起始区的影响。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5321-30. doi: 10.1073/pnas.1401752111. Epub 2014 Nov 17.

本文引用的文献

9
Collaborating and sharing data in epilepsy research.癫痫研究中的数据协作与共享。
J Clin Neurophysiol. 2015 Jun;32(3):235-9. doi: 10.1097/WNP.0000000000000159.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验