Frankenstein Ziv, Alon Uri, Cohen Irun R
Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
Biol Direct. 2006 Oct 24;1:32. doi: 10.1186/1745-6150-1-32.
Three networks of intercellular communication can be associated with cytokine secretion; one limited to cells of the immune system (immune cells), one limited to parenchymal cells of organs and tissues (body cells), and one involving interactions between immune and body cells (immune-body interface). These cytokine connections determine the inflammatory response to injury and subsequent healing as well as the biologic consequences of the adaptive immune response to antigens. We informatically probed the cytokine database to uncover the underlying network architecture of the three networks.
We now report that the three cytokine networks are among the densest of complex networks yet studied, and each features a characteristic profile of specific three-cell motifs. Some legitimate cytokine connections are shunned (anti-motifs). Certain immune cells can be paired by their input-output positions in a cytokine architecture tree of five tiers: macrophages (MPhi) and B cells (BC) comprise the first tier; the second tier is formed by T helper 1 (Th1) and T helper 2 (Th2) cells; the third tier includes dendritic cells (DC), mast cells (MAST), Natural Killer T cells (NK-T) and others; the fourth tier is formed by neutrophils (NEUT) and Natural Killer cells (NK); and the Cytotoxic T cell (CTL) stand alone as a fifth tier. The three-cell cytokine motif architecture of immune system cells places the immune system in a super-family that includes social networks and the World Wide Web. Body cells are less clearly stratified, although cells involved in wound healing and angiogenesis are most highly interconnected with immune cells.
Cytokine network architecture creates an innate cell-communication platform that organizes the biologic outcome of antigen recognition and inflammation. Informatics sheds new light on immune-body systems organization.
This article was reviewed by Neil Greenspan, Matthias von Herrath and Anne Cooke.
细胞间通讯的三个网络可能与细胞因子分泌相关;一个仅限于免疫系统细胞(免疫细胞),一个仅限于器官和组织的实质细胞(体细胞),还有一个涉及免疫细胞与体细胞之间的相互作用(免疫 - 体界面)。这些细胞因子连接决定了对损伤的炎症反应及后续愈合,以及对抗原的适应性免疫反应的生物学后果。我们通过信息学方法探究细胞因子数据库,以揭示这三个网络的潜在网络架构。
我们现在报告,这三个细胞因子网络是迄今研究的最密集的复杂网络之一,每个网络都具有特定三细胞基序的特征图谱。一些合理的细胞因子连接被避开(反基序)。某些免疫细胞可以根据它们在五层细胞因子架构树中的输入 - 输出位置进行配对:巨噬细胞(MPhi)和B细胞(BC)构成第一层;第二层由辅助性T细胞1(Th1)和辅助性T细胞2(Th2)组成;第三层包括树突状细胞(DC)、肥大细胞(MAST)、自然杀伤T细胞(NK - T)等;第四层由中性粒细胞(NEUT)和自然杀伤细胞(NK)组成;细胞毒性T细胞(CTL)单独作为第五层。免疫系统细胞的三细胞细胞因子基序架构将免疫系统置于一个超家族中,该超家族包括社交网络和万维网。体细胞的分层不太明显,尽管参与伤口愈合和血管生成的细胞与免疫细胞的相互连接最为紧密。
细胞因子网络架构创建了一个先天性细胞通讯平台,该平台组织了抗原识别和炎症的生物学结果。信息学为免疫 - 体系统组织提供了新的见解。
本文由尼尔·格林斯潘、马蒂亚斯·冯·赫拉斯和安妮·库克审阅。