Suppr超能文献

参数自举拟合优度检验的I型错误与功效:完全信息与有限信息

Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information.

作者信息

Tollenaar Nikolaj, Mooijaart Ab

机构信息

Department of Psychology, Leiden University, The Netherlands.

出版信息

Br J Math Stat Psychol. 2003 Nov;56(Pt 2):271-88. doi: 10.1348/000711003770480048.

Abstract

In sparse tables for categorical data well-known goodness-of-fit statistics are not chi-square distributed. A consequence is that model selection becomes a problem. It has been suggested that a way out of this problem is the use of the parametric bootstrap. In this paper, the parametric bootstrap goodness-of-fit test is studied by means of an extensive simulation study; the Type I error rates and power of this test are studied under several conditions of sparseness. In the presence of sparseness, models were used that were likely to violate the regularity conditions. Besides bootstrapping the goodness-of-fit usually used (full information statistics), corrected versions of these statistics and a limited information statistic are bootstrapped. These bootstrap tests were also compared to an asymptotic test using limited information. Results indicate that bootstrapping the usual statistics fails because these tests are too liberal, and that bootstrapping or asymptotically testing the limited information statistic works better with respect to Type I error and outperforms the other statistics by far in terms of statistical power. The properties of all tests are illustrated using categorical Markov models.

摘要

在用于分类数据的稀疏表中,著名的拟合优度统计量并不服从卡方分布。其结果是模型选择成为一个问题。有人提出解决这个问题的一个方法是使用参数自助法。在本文中,通过广泛的模拟研究对参数自助法拟合优度检验进行了研究;在几种稀疏条件下研究了该检验的I型错误率和功效。在存在稀疏性的情况下,使用了可能违反正则条件的模型。除了对通常使用的拟合优度(完全信息统计量)进行自助法外,还对这些统计量的校正版本和一个有限信息统计量进行了自助法。还将这些自助法检验与使用有限信息的渐近检验进行了比较。结果表明,对通常的统计量进行自助法失败,因为这些检验过于宽松,并且对有限信息统计量进行自助法或渐近检验在I型错误方面效果更好,并且在统计功效方面远远优于其他统计量。使用分类马尔可夫模型说明了所有检验的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验