Suppr超能文献

高分辨率成像数据的独立成分分析可识别出不同的功能域。

Independent component analysis of high-resolution imaging data identifies distinct functional domains.

作者信息

Reidl Jürgen, Starke Jens, Omer David B, Grinvald Amiram, Spors Hartwig

机构信息

Win Group of Olfactory Dynamics, Heidelberger Akademie der Wissenschaften, Germany.

出版信息

Neuroimage. 2007 Jan 1;34(1):94-108. doi: 10.1016/j.neuroimage.2006.08.031. Epub 2006 Oct 25.

Abstract

In the vertebrate brain external stimuli are often represented in distinct functional domains distributed across the cortical surface. Fast imaging techniques used to measure patterns of population activity record movies with many pixels and many frames, i.e., data sets with high dimensionality. Here we demonstrate that principal component analysis (PCA) followed by spatial independent component analysis (sICA), can be exploited to reduce the dimensionality of data sets recorded in the olfactory bulb and the somatosensory cortex of mice as well as the visual cortex of monkeys, without loosing the stimulus-specific responses. Different neuronal populations are separated based on their stimulus-specific spatiotemporal activation. Both, spatial and temporal response characteristics can be objectively obtained, simultaneously. In the olfactory bulb, groups of glomeruli with different response latencies can be identified. This is shown for recordings of olfactory receptor neuron input measured with a calcium-sensitive axon tracer and for network dynamics measured with the voltage-sensitive dye RH 1838. In the somatosensory cortex, barrels responding to the stimulation of single whiskers can be automatically detected. In the visual cortex orientation columns can be extracted. In all cases artifacts due to movement, heartbeat or respiration were separated from the functional signal by sICA and could be removed from the data set. sICA following PCA is therefore a powerful technique for data compression, unbiased analysis and dissection of imaging data of population activity, collected with high spatial and temporal resolution.

摘要

在脊椎动物大脑中,外部刺激通常在分布于皮质表面的不同功能域中呈现。用于测量群体活动模式的快速成像技术记录的电影包含许多像素和许多帧,即具有高维度的数据集。在这里,我们证明,先进行主成分分析(PCA),然后进行空间独立成分分析(sICA),可以用来降低在小鼠嗅球和体感皮层以及猴子视觉皮层中记录的数据集的维度,同时不丢失刺激特异性反应。不同的神经元群体根据其刺激特异性时空激活而被分离。空间和时间反应特征都可以同时客观地获得。在嗅球中,可以识别出具有不同反应潜伏期的肾小球群。这在使用钙敏感轴突示踪剂测量的嗅觉受体神经元输入记录以及使用电压敏感染料RH 1838测量的网络动力学中得到了证明。在体感皮层中,可以自动检测到对单个触须刺激做出反应的桶状结构。在视觉皮层中,可以提取出定向柱。在所有情况下,由运动、心跳或呼吸引起的伪影通过sICA与功能信号分离,并可以从数据集中去除。因此,PCA之后的sICA是一种强大的技术,可用于数据压缩、对以高空间和时间分辨率收集的群体活动成像数据进行无偏分析和剖析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验