Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Cell Rep. 2017 Oct 24;21(4):1102-1115. doi: 10.1016/j.celrep.2017.10.013.
Ca imaging techniques permit time-lapse recordings of neuronal activity from large populations over weeks. However, without identifying the same neurons across imaging sessions (cell registration), longitudinal analysis of the neural code is restricted to population-level statistics. Accurate cell registration becomes challenging with increased numbers of cells, sessions, and inter-session intervals. Current cell registration practices, whether manual or automatic, do not quantitatively evaluate registration accuracy, possibly leading to data misinterpretation. We developed a probabilistic method that automatically registers cells across multiple sessions and estimates the registration confidence for each registered cell. Using large-scale Ca imaging data recorded over weeks from the hippocampus and cortex of freely behaving mice, we show that our method performs more accurate registration than previously used routines, yielding estimated error rates <5%, and that the registration is scalable for many sessions. Thus, our method allows reliable longitudinal analysis of the same neurons over long time periods.
钙成像技术允许对大群体的神经元活动进行长达数周的延时记录。然而,如果不能在成像会话中识别出相同的神经元(细胞注册),那么对神经编码的纵向分析就只能局限于群体统计。随着细胞数量、会话数量和会话间隔的增加,准确的细胞注册变得更加具有挑战性。目前的细胞注册实践,无论是手动的还是自动的,都没有对注册准确性进行定量评估,这可能导致数据的错误解释。我们开发了一种概率方法,可以自动对多个会话中的细胞进行注册,并为每个注册细胞估计注册置信度。使用来自自由活动小鼠海马体和皮层的大规模钙成像数据,我们表明,我们的方法比以前使用的方法进行更准确的注册,得到的估计错误率<5%,并且注册可扩展到多个会话。因此,我们的方法允许对相同的神经元进行可靠的长时间的纵向分析。