Suppr超能文献

黑腹果蝇物种组中的系统发育不一致性。

Phylogenetic incongruence in the Drosophila melanogaster species group.

作者信息

Wong Alex, Jensen Jeffrey D, Pool John E, Aquadro Charles F

机构信息

Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.

出版信息

Mol Phylogenet Evol. 2007 Jun;43(3):1138-50. doi: 10.1016/j.ympev.2006.09.002. Epub 2006 Sep 9.

Abstract

Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.

摘要

黑腹果蝇及其近缘种在比较生物学中被广泛应用。尽管系统发育信息对于此类研究很重要,但由于不同位点的系统发育信号相互冲突,一些黑腹果蝇物种组成员之间的关系尚不清楚。在本研究中,我们使用12个核基因座(11个编码基因座和1个非编码基因座)来评估这个模型系统中的系统发育不一致程度。我们关注两个节点:(1)连接果蝇直立种 - 果蝇奥雷纳种、黑腹果蝇 - 拟果蝇以及雅库布果蝇 - 泰斯氏果蝇谱系的节点,以及(2)连接导致黑腹果蝇、高桥果蝇和优美果蝇亚组谱系的节点。我们发现第一个节点处不一致的证据有限;我们的数据以及之前几项研究的数据都强烈支持由直立果蝇 - 奥雷纳果蝇和雅库布果蝇 - 泰斯氏果蝇组成的一个分支的单系性。相比之下,使用基于似然性的一致性检验,我们发现第二个节点处存在拓扑不一致的有力证据。不同的基因座支持黑腹果蝇、高桥果蝇和优美果蝇亚组之间不同的关系,并且观察到的不一致不容易归因于同塑性、非平衡碱基组成或对一部分基因座的正选择。我们认为这三个亚组共同祖先中的谱系分选是对我们观察结果最合理的解释。这种谱系分选可能导致对树拓扑结构和进化速率的估计有偏差,并且可能混淆对正选择的推断。

相似文献

1
Phylogenetic incongruence in the Drosophila melanogaster species group.
Mol Phylogenet Evol. 2007 Jun;43(3):1138-50. doi: 10.1016/j.ympev.2006.09.002. Epub 2006 Sep 9.
2
Molecular phylogeny of the Drosophila melanogaster species subgroup.
J Mol Evol. 2003 Nov;57(5):562-73. doi: 10.1007/s00239-003-2510-x.
3
Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting.
PLoS Genet. 2006 Oct 27;2(10):e173. doi: 10.1371/journal.pgen.0020173. Epub 2006 Aug 28.
4
Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes.
Mol Biol Evol. 2001 Apr;18(4):606-19. doi: 10.1093/oxfordjournals.molbev.a003841.
5
Structural evolution of the Drosophila 5S ribosomal genes.
J Mol Evol. 1995 Nov;41(5):615-21. doi: 10.1007/BF00175820.
7
Evolution of the transposable element mariner in Drosophila species.
Genetics. 1991 Jun;128(2):319-29. doi: 10.1093/genetics/128.2.319.
10
An intron loss of Dfak gene in species of the Drosophila melanogaster subgroup and phylogenetic analysis.
J Hered. 2008 Jul-Aug;99(4):417-20. doi: 10.1093/jhered/esn006. Epub 2008 Feb 28.

引用本文的文献

1
Co-option of the trichome-forming network initiated the evolution of a morphological novelty in Drosophila eugracilis.
Curr Biol. 2024 Nov 18;34(22):5284-5294.e3. doi: 10.1016/j.cub.2024.09.073. Epub 2024 Oct 25.
3
Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation.
Mol Ecol Resour. 2022 May;22(4):1559-1581. doi: 10.1111/1755-0998.13561. Epub 2021 Dec 8.
4
What does mitogenomics tell us about the evolutionary history of the Drosophila buzzatii cluster (repleta group)?
PLoS One. 2019 Nov 7;14(11):e0220676. doi: 10.1371/journal.pone.0220676. eCollection 2019.
5
Phylogenetic position of the Drosophila fima and dentissima lineages, and the status of the D. melanogaster species group.
Mol Phylogenet Evol. 2019 Oct;139:106543. doi: 10.1016/j.ympev.2019.106543. Epub 2019 Jun 24.
6
Whole genome phylogenies for multiple Drosophila species.
BMC Res Notes. 2012 Dec 4;5:670. doi: 10.1186/1756-0500-5-670.
9
Comparative genomics of Drosophila mtDNA: Novel features of conservation and change across functional domains and lineages.
J Mol Evol. 2009 Jul;69(1):94-114. doi: 10.1007/s00239-009-9255-0. Epub 2009 Jun 16.

本文引用的文献

1
Combining data in phylogenetic analysis.
Trends Ecol Evol. 1996 Apr;11(4):152-8. doi: 10.1016/0169-5347(96)10006-9.
2
Discordance of species trees with their most likely gene trees.
PLoS Genet. 2006 May;2(5):e68. doi: 10.1371/journal.pgen.0020068. Epub 2006 May 26.
3
Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene.
Nature. 2006 Apr 20;440(7087):1050-3. doi: 10.1038/nature04597.
4
Basal relationships in the Drosophila melanogaster species group.
Mol Phylogenet Evol. 2006 Jun;39(3):787-98. doi: 10.1016/j.ympev.2006.01.029. Epub 2006 Mar 9.
5
Estimating diversifying selection and functional constraint in the presence of recombination.
Genetics. 2006 Mar;172(3):1411-25. doi: 10.1534/genetics.105.044917. Epub 2005 Dec 30.
6
Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster.
PLoS Genet. 2005 Oct;1(4):e44. doi: 10.1371/journal.pgen.0010044.
7
Phylogenetic MCMC algorithms are misleading on mixtures of trees.
Science. 2005 Sep 30;309(5744):2207-9. doi: 10.1126/science.1115493.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验