Suppr超能文献

蛋白质组学在寻找潜在生物标志物方面的进展:主成分分析和判别分析在二维图谱评估中的应用

Improvements in the search for potential biomarkers by proteomics: application of principal component and discriminant analyses for two-dimensional maps evaluation.

作者信息

Rodríguez-Piñeiro Ana María, Rodríguez-Berrocal Francisco Javier, Páez de la Cadena María

机构信息

Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310 Vigo, Spain.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Apr 15;849(1-2):251-60. doi: 10.1016/j.jchromb.2006.09.021. Epub 2006 Oct 30.

Abstract

In this study, we evaluated if the application of multivariate analysis on the data obtained from two-dimensional protein maps could mean an improvement in the search for protein markers. First, we performed a classical proteomic study of the differential expression of serum N-glycoproteins in colorectal cancer patients. Then, applying principal component analysis (PCA) we assessed the utility of the 2-D protein pattern and certain subsets of spots as a tool to distinguish control and case samples, and tested the accuracy of the classification model by linear discriminant analysis (LDA). On the other hand we looked for altered spots by univariate statistics and then analysed them as a cluster by PCA and LDA. We found that those proteins combined presented a theoretical sensitivity and specificity of 100%. Finally, the spots with known protein identity were analysed by multivariate methods, finding a subgroup that behaved as the most obvious candidates for further validation trials.

摘要

在本研究中,我们评估了对二维蛋白质图谱所获数据应用多变量分析是否意味着在寻找蛋白质标志物方面有所改进。首先,我们对结直肠癌患者血清N - 糖蛋白的差异表达进行了经典蛋白质组学研究。然后,应用主成分分析(PCA),我们评估了二维蛋白质模式和某些斑点子集作为区分对照和病例样本工具的效用,并通过线性判别分析(LDA)测试了分类模型的准确性。另一方面,我们通过单变量统计寻找变化的斑点,然后通过PCA和LDA将它们作为一个聚类进行分析。我们发现,那些组合的蛋白质呈现出理论上100%的敏感性和特异性。最后,通过多变量方法对具有已知蛋白质身份的斑点进行分析,发现一个亚组表现为进一步验证试验的最明显候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验