Suppr超能文献

亚硝酸盐可减轻缺氧状态下的细胞质酸中毒。

Nitrite reduces cytoplasmic acidosis under anoxia.

作者信息

Libourel I G L, van Bodegom P M, Fricker M D, Ratcliffe R G

机构信息

Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.

出版信息

Plant Physiol. 2006 Dec;142(4):1710-7. doi: 10.1104/pp.106.088898. Epub 2006 Oct 27.

Abstract

The ameliorating effect of nitrate on the acidification of the cytoplasm during short-term anoxia was investigated in maize (Zea mays) root segments. Seedlings were grown in the presence or absence of nitrate, and changes in the cytoplasmic and vacuolar pH in response to the imposition of anoxia were measured by in vivo (31)P nuclear magnetic resonance spectroscopy. Soluble ions and metabolites released to the suspending medium by the anoxic root segments were measured by high-performance liquid chromatography and (1)H nuclear magnetic resonance spectroscopy, and volatile metabolites were measured by gas chromatography and gas chromatography-mass spectrometry. The beneficial effect of nitrate on cytoplasmic pH regulation under anoxia occurred despite limited metabolism of nitrate under anoxia, and modest effects on the ions and metabolites, including fermentation end products, released from the anoxic root segments. Interestingly, exposing roots grown and treated in the absence of nitrate to micromolar levels of nitrite during anoxia had a beneficial effect on the cytoplasmic pH that was comparable to the effect observed for roots grown and treated in the presence of nitrate. It is argued that nitrate itself is not directly responsible for improved pH regulation under anoxia, contrary to the usual assumption, and that nitrite rather than nitrate should be the focus for further work on the beneficial effect of nitrate on flooding tolerance.

摘要

在玉米(Zea mays)根段中研究了硝酸盐对短期缺氧期间细胞质酸化的改善作用。幼苗在有或无硝酸盐的条件下生长,通过体内(31)P核磁共振光谱法测量缺氧处理后细胞质和液泡pH的变化。通过高效液相色谱法和(1)H核磁共振光谱法测量缺氧根段释放到悬浮介质中的可溶性离子和代谢物,通过气相色谱法和气相色谱-质谱法测量挥发性代谢物。尽管缺氧条件下硝酸盐的代谢有限,且对缺氧根段释放的离子和代谢物(包括发酵终产物)影响不大,但硝酸盐对缺氧条件下细胞质pH调节仍具有有益作用。有趣的是,在缺氧期间将在无硝酸盐条件下生长和处理的根暴露于微摩尔水平的亚硝酸盐,对细胞质pH具有有益作用,这与在有硝酸盐条件下生长和处理的根所观察到的效果相当。有人认为,与通常的假设相反,硝酸盐本身并非直接负责改善缺氧条件下的pH调节,亚硝酸盐而非硝酸盐应成为进一步研究硝酸盐对耐涝性有益作用的重点。

相似文献

1
Nitrite reduces cytoplasmic acidosis under anoxia.
Plant Physiol. 2006 Dec;142(4):1710-7. doi: 10.1104/pp.106.088898. Epub 2006 Oct 27.
2
Nitrate uptake and nitrite release by tomato roots in response to anoxia.
J Plant Physiol. 2004 Jul;161(7):855-65. doi: 10.1016/j.jplph.2003.11.003.
5
Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.
Ann Bot. 2007 Sep;100(3):497-503. doi: 10.1093/aob/mcm142.
7
Cadmium induces acidosis in maize root cells.
New Phytol. 2008;179(3):700-711. doi: 10.1111/j.1469-8137.2008.02509.x. Epub 2008 Jun 5.
8
Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression.
Planta. 2008 Nov;228(6):989-98. doi: 10.1007/s00425-008-0798-x. Epub 2008 Aug 5.
9
Strigolactones and Auxin Cooperate to Regulate Maize Root Development and Response to Nitrate.
Plant Cell Physiol. 2021 Sep 24;62(4):610-623. doi: 10.1093/pcp/pcab014.
10
Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots.
J Exp Bot. 2004 Sep;55(405):2053-61. doi: 10.1093/jxb/erh231. Epub 2004 Aug 13.

引用本文的文献

1
Nitrate-Nitrite-Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants.
Int J Mol Sci. 2022 Sep 29;23(19):11522. doi: 10.3390/ijms231911522.
2
Multi-stress resilience in plants recovering from submergence.
Plant Biotechnol J. 2023 Mar;21(3):466-481. doi: 10.1111/pbi.13944. Epub 2022 Nov 14.
3
Nitric oxide accelerates germination via the regulation of respiration in chickpea.
J Exp Bot. 2019 Aug 29;70(17):4539-4555. doi: 10.1093/jxb/erz185.
4
Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects.
Front Plant Sci. 2019 Mar 22;10:340. doi: 10.3389/fpls.2019.00340. eCollection 2019.
6
Utilization of (15)NO3 (-) by nodulated soybean plants under conditions of root hypoxia.
Physiol Mol Biol Plants. 2014 Jul;20(3):287-93. doi: 10.1007/s12298-014-0241-7. Epub 2014 Jun 12.
7
Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry.
PLoS One. 2014 Mar 13;9(3):e91537. doi: 10.1371/journal.pone.0091537. eCollection 2014.
8
Nitrogen metabolism in plants under low oxygen stress.
Planta. 2014 Mar;239(3):531-41. doi: 10.1007/s00425-013-2015-9. Epub 2013 Dec 27.
9
The Transcriptome of Brassica napus L. Roots under Waterlogging at the Seedling Stage.
Int J Mol Sci. 2013 Jan 28;14(2):2637-51. doi: 10.3390/ijms14022637.

本文引用的文献

4
5
Mechanisms for nitric oxide synthesis in plants.
J Exp Bot. 2006;57(3):471-8. doi: 10.1093/jxb/erj050. Epub 2005 Dec 15.
6
Formation and possible roles of nitric oxide in plant roots.
J Exp Bot. 2006;57(3):463-70. doi: 10.1093/jxb/erj058. Epub 2005 Dec 15.
7
In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ.
J Exp Bot. 2005 Oct;56(420):2601-9. doi: 10.1093/jxb/eri252. Epub 2005 Aug 30.
10
Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways.
J Exp Bot. 2004 Dec;55(408):2473-82. doi: 10.1093/jxb/erh272. Epub 2004 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验