Suppr超能文献

一种用于理解时空热点的可视化分析方法。

A visual analytics approach to understanding spatiotemporal hotspots.

机构信息

Purdue University, West Lafayette, IN 47906, USA.

出版信息

IEEE Trans Vis Comput Graph. 2010 Mar-Apr;16(2):205-20. doi: 10.1109/TVCG.2009.100.

Abstract

As data sources become larger and more complex, the ability to effectively explore and analyze patterns among varying sources becomes a critical bottleneck in analytic reasoning. Incoming data contain multiple variables, high signal-to-noise ratio, and a degree of uncertainty, all of which hinder exploration, hypothesis generation/exploration, and decision making. To facilitate the exploration of such data, advanced tool sets are needed that allow the user to interact with their data in a visual environment that provides direct analytic capability for finding data aberrations or hotspots. In this paper, we present a suite of tools designed to facilitate the exploration of spatiotemporal data sets. Our system allows users to search for hotspots in both space and time, combining linked views and interactive filtering to provide users with contextual information about their data and allow the user to develop and explore their hypotheses. Statistical data models and alert detection algorithms are provided to help draw user attention to critical areas. Demographic filtering can then be further applied as hypotheses generated become fine tuned. This paper demonstrates the use of such tools on multiple geospatiotemporal data sets.

摘要

随着数据源变得越来越大且越来越复杂,有效探索和分析不同来源之间模式的能力成为分析推理中的一个关键瓶颈。输入数据包含多个变量、高信噪比和一定程度的不确定性,所有这些都阻碍了探索、假设生成/探索和决策制定。为了促进对这类数据的探索,需要先进的工具集,使用户能够在一个提供直接分析能力以查找数据异常或热点的可视化环境中与数据进行交互。在本文中,我们提出了一套工具,旨在促进时空数据集的探索。我们的系统允许用户在空间和时间上搜索热点,结合链接视图和交互式过滤,为用户提供有关其数据的上下文信息,并允许用户开发和探索其假设。提供了统计数据模型和警报检测算法,以帮助用户关注关键区域。然后可以进一步应用人口统计过滤,因为生成的假设变得更加精细。本文展示了在多个地理时空数据集上使用这些工具的情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验