Suppr超能文献

用于研究潜在的细胞色素P450 3A(CYP3A)和P-糖蛋白(Pgp)介导的药物相互作用的体内动物模型。

In vivo animal models for investigating potential CYP3A- and Pgp-mediated drug-drug interactions.

作者信息

Marathe Punit H, Rodrigues A David

机构信息

Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ 08543, USA.

出版信息

Curr Drug Metab. 2006 Oct;7(7):687-704. doi: 10.2174/138920006778520598.

Abstract

With the advent of polytherapy it has become prudent to minimize, as much as possible, the potential for drug-drug interactions. Towards this end, the metabolic and transporter pathways involved in the disposition of a drug candidate (phenotyping) are evaluated in vitro employing available human tissue and specific reagents. Likewise, in vitro screening for inhibition and induction of drug-metabolizing enzymes and transporters is conducted also. Such in vitro human data can be made available prior to human dosing and enable in vitro to in vivo-based predictions of clinical outcomes. Despite some success, however, in vitro systems are not dynamic and sometimes fail to predict drug-drug interactions for a variety of reasons. In comparison, relatively less effort has been made to evaluate predictions based on data derived from in vivo animal models. This review will attempt to summarize different examples from the literature where animal models have been used to predict cytochrome P450 3A (CYP3A)- and P-glycoprotein (Pgp)-based drug-drug interactions. When employing data from animal models one needs to be aware of species differences in pharmacokinetics, clearance pathways and selectivity and affinity of probe substrates and inhibitors. Because of these differences, in vivo animal studies alone, cannot be predictive of human drug-drug interactions. Despite these caveats, the information obtained from validated in vivo animal models may prove useful when used in conjunction with in vitro-in vivo extrapolation methods. Such an integrated data set can be used to select drug candidates with a reduced drug interaction potential.

摘要

随着联合治疗的出现,尽可能减少药物相互作用的可能性已变得十分谨慎。为此,利用现有的人体组织和特定试剂在体外评估参与候选药物处置的代谢和转运途径(表型分析)。同样,也会进行药物代谢酶和转运体抑制及诱导的体外筛选。此类体外人体数据可在人体给药前获取,并能实现基于体外到体内的临床结果预测。然而,尽管取得了一些成功,但体外系统缺乏动态性,且有时由于各种原因无法预测药物相互作用。相比之下,基于体内动物模型数据进行预测的评估工作相对较少。本综述将试图总结文献中的不同实例,其中动物模型已被用于预测基于细胞色素P450 3A(CYP3A)和P-糖蛋白(Pgp)的药物相互作用。使用动物模型数据时,需要注意药代动力学、清除途径以及探针底物和抑制剂的选择性和亲和力方面的物种差异。由于这些差异,仅靠体内动物研究无法预测人体药物相互作用。尽管存在这些警告,但从经过验证的体内动物模型获得的信息与体外-体内外推方法结合使用时可能会很有用。这样一个综合数据集可用于选择具有较低药物相互作用潜力的候选药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验