Suppr超能文献

相似文献

2
Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance.
Artif Intell Med. 2018 Aug;90:42-52. doi: 10.1016/j.artmed.2018.07.002. Epub 2018 Aug 6.
3
Text mining for adverse drug events: the promise, challenges, and state of the art.
Drug Saf. 2014 Oct;37(10):777-90. doi: 10.1007/s40264-014-0218-z.
4
Mining clinical text for signals of adverse drug-drug interactions.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):353-62. doi: 10.1136/amiajnl-2013-001612. Epub 2013 Oct 24.
5
7
SOCIAL MEDIA MINING SHARED TASK WORKSHOP.
Pac Symp Biocomput. 2016;21:581-92.
8
Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
J Biomed Inform. 2016 Apr;60:294-308. doi: 10.1016/j.jbi.2016.02.009. Epub 2016 Feb 20.
9
Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions.
Clin Ther. 2023 Feb;45(2):117-133. doi: 10.1016/j.clinthera.2023.01.002. Epub 2023 Jan 31.

引用本文的文献

1
Pharmacovigilance in the digital age: gaining insight from social media data.
Exp Biol Med (Maywood). 2025 May 27;250:10555. doi: 10.3389/ebm.2025.10555. eCollection 2025.
5
SubGE-DDI: A new prediction model for drug-drug interaction established through biomedical texts and drug-pairs knowledge subgraph enhancement.
PLoS Comput Biol. 2024 Apr 16;20(4):e1011989. doi: 10.1371/journal.pcbi.1011989. eCollection 2024 Apr.
6
A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for alpelisib.
Heliyon. 2024 Mar 8;10(6):e27529. doi: 10.1016/j.heliyon.2024.e27529. eCollection 2024 Mar 30.
7
Using Social Media as a Source of Real-World Data for Pharmaceutical Drug Development and Regulatory Decision Making.
Drug Saf. 2024 May;47(5):495-511. doi: 10.1007/s40264-024-01409-5. Epub 2024 Mar 6.
8
Detection Algorithms for Simple Two-Group Comparisons Using Spontaneous Reporting Systems.
Drug Saf. 2024 Jun;47(6):535-543. doi: 10.1007/s40264-024-01404-w. Epub 2024 Feb 22.
9
Use of Electronic Health Record Data for Drug Safety Signal Identification: A Scoping Review.
Drug Saf. 2023 Aug;46(8):725-742. doi: 10.1007/s40264-023-01325-0. Epub 2023 Jun 20.

本文引用的文献

2
Coupling Data Mining and Laboratory Experiments to Discover Drug Interactions Causing QT Prolongation.
J Am Coll Cardiol. 2016 Oct 18;68(16):1756-1764. doi: 10.1016/j.jacc.2016.07.761.
3
Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
Database (Oxford). 2016 Aug 18;2016. doi: 10.1093/database/baw118. Print 2016.
5
Recommendations for selecting drug-drug interactions for clinical decision support.
Am J Health Syst Pharm. 2016 Apr 15;73(8):576-85. doi: 10.2146/ajhp150565.
6
Drug-Drug Interaction Extraction via Convolutional Neural Networks.
Comput Math Methods Med. 2016;2016:6918381. doi: 10.1155/2016/6918381. Epub 2016 Jan 31.
8
A functional temporal association mining approach for screening potential drug-drug interactions from electronic patient databases.
Inform Health Soc Care. 2016 Dec;41(4):387-404. doi: 10.3109/17538157.2015.1064427. Epub 2016 Jan 29.
9
Surveillance of Physicians Causing Potential Drug-Drug Interactions in Ambulatory Care: A Pilot Study in Switzerland.
PLoS One. 2016 Jan 25;11(1):e0147606. doi: 10.1371/journal.pone.0147606. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验