Hagren Olof Idevall, Tengholm Anders
Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
J Biol Chem. 2006 Dec 22;281(51):39121-7. doi: 10.1074/jbc.M607445200. Epub 2006 Oct 30.
In insulin-secreting beta-cells, activation of phosphatidylinositol 3'-OH-kinase with resulting formation of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) has been implicated in the regulation of ion channels, insulin secretion, and gene transcription as well as in cell growth and survival, but the kinetics of PIP(3) signals following physiological stimulation of insulin secretion is unknown. Using evanescent wave microscopy and a green fluorescent protein-tagged PIP(3)-binding protein domain for real-time monitoring of plasma membrane PIP(3) concentration in single MIN6 beta-cells, we now demonstrate that glucose stimulation of insulin secretion results in pronounced PIP(3) oscillations via autocrine stimulation of insulin receptors. Glucose lacked effect when insulin secretion was prevented with the hyperpolarizing agent diazoxide, but the sugar dose dependently enhanced the PIP(3) response to maximal insulin stimulation without affecting the rate of PIP(3) degradation. We conclude that glucose is an important co-activator of phosphatidylinositol-3'-OH-kinase and that the plasma membrane PIP(3) concentration in beta-cells undergoes oscillations due to pulsatile release of insulin.