Fang Chong, Senes Alessandro, Cristian Lidia, DeGrado William F, Hochstrasser Robin M
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16740-5. doi: 10.1073/pnas.0608243103. Epub 2006 Oct 30.
The tertiary interactions between amide-I vibrators on the separate helices of transmembrane helix dimers were probed by ultrafast 2D vibrational photon echo spectroscopy. The 2D IR approach proves to be a useful structural method for the study of membrane-bound structures. The 27-residue human erythrocyte protein Glycophorin A transmembrane peptide sequence: KKITLIIFG(79)VMAGVIGTILLISWG(94)IKK was labeled at G(79) and G(94) with (13)C=(16)O or (13)C=(18)O. The isotopomers and their 50:50 mixtures formed helical dimers in SDS micelles whose 2D IR spectra showed components from homodimers when both helices had either (13)C=(16)O or (13)C=(18)O substitution and a heterodimer when one had (13)C=(16)O substitution and the other had (13)C=(18)O substitution. The cross-peaks in the pure heterodimer 2D IR difference spectrum and the splitting of the homodimer peaks in the linear IR spectrum show that the amide-I mode is delocalized across a pair of helices. The excitation exchange coupling in the range 4.3-6.3 cm(-1) arises from through-space interactions between amide units on different helices. The angle between the two Gly(79) amide-I transition dipoles, estimated at 103 degrees from linear IR spectroscopy and 110 degrees from 2D IR spectroscopy, combined with the coupling led to a structural picture of the hydrophobic interface that is remarkably consistent with results from NMR on helix dimers. The helix crossing angle in SDS is estimated at 45 degrees. Two-dimensional IR spectroscopy also sets limits on the range of geometrical parameters for the helix dimers from an analysis of the coupling constant distribution.
通过超快二维振动光子回波光谱法研究了跨膜螺旋二聚体不同螺旋上酰胺-I振动体之间的三级相互作用。二维红外方法被证明是研究膜结合结构的一种有用的结构方法。27个残基的人红细胞膜糖蛋白A跨膜肽序列:KKITLIIFG(79)VMAGVIGTILLISWG(94)IKK在G(79)和G(94)处用(13)C=(16)O或(13)C=(18)O进行标记。这些同位素异构体及其50:50的混合物在SDS胶束中形成螺旋二聚体,其二维红外光谱显示,当两个螺旋都有(13)C=(16)O或(13)C=(18)O取代时,有来自同二聚体的成分;当一个有(13)C=(16)O取代而另一个有(13)C=(18)O取代时,则有一个异二聚体的成分。纯异二聚体二维红外差谱中的交叉峰以及线性红外光谱中同二聚体峰的分裂表明,酰胺-I模式在一对螺旋上是离域的。4.3-6.3 cm(-1)范围内的激发交换耦合源于不同螺旋上酰胺单元之间的空间相互作用。根据线性红外光谱估计,两个Gly(79)酰胺-I跃迁偶极之间的夹角为103度,根据二维红外光谱估计为110度,结合耦合作用,得到了疏水界面的结构图像,这与螺旋二聚体的核磁共振结果非常一致。在SDS中,螺旋交叉角估计为45度。二维红外光谱还通过对耦合常数分布的分析,对螺旋二聚体的几何参数范围设定了限制。