Freedman Tanya S, Sondermann Holger, Friedland Gregory D, Kortemme Tanja, Bar-Sagi Dafna, Marqusee Susan, Kuriyan John
Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16692-7. doi: 10.1073/pnas.0608127103. Epub 2006 Oct 30.
The Ras-specific guanine nucleotide-exchange factors Son of sevenless (Sos) and Ras guanine nucleotide-releasing factor 1 (RasGRF1) transduce extracellular stimuli into Ras activation by catalyzing the exchange of Ras-bound GDP for GTP. A truncated form of RasGRF1 containing only the core catalytic Cdc25 domain is sufficient for stimulating Ras nucleotide exchange, whereas the isolated Cdc25 domain of Sos is inactive. At a site distal to the catalytic site, nucleotide-bound Ras binds to Sos, making contacts with the Cdc25 domain and with a Ras exchanger motif (Rem) domain. This allosteric Ras binding stimulates nucleotide exchange by Sos, but the mechanism by which this stimulation occurs has not been defined. We present a crystal structure of the Rem and Cdc25 domains of Sos determined at 2.0-A resolution in the absence of Ras. Differences between this structure and that of Sos bound to two Ras molecules show that allosteric activation of Sos by Ras occurs through a rotation of the Rem domain that is coupled to a rotation of a helical hairpin at the Sos catalytic site. This motion relieves steric occlusion of the catalytic site, allowing substrate Ras binding and nucleotide exchange. A structure of the isolated RasGRF1 Cdc25 domain determined at 2.2-A resolution, combined with computational analyses, suggests that the Cdc25 domain of RasGRF1 is able to maintain an active conformation in isolation because the helical hairpin has strengthened interactions with the Cdc25 domain core. These results indicate that RasGRF1 lacks the allosteric activation switch that is crucial for Sos activity.
Ras特异性鸟嘌呤核苷酸交换因子七号less之子(Sos)和Ras鸟嘌呤核苷酸释放因子1(RasGRF1)通过催化Ras结合的GDP与GTP的交换,将细胞外刺激转化为Ras激活。仅包含核心催化Cdc25结构域的RasGRF1截短形式足以刺激Ras核苷酸交换,而Sos的分离Cdc25结构域则无活性。在催化位点远端的一个位点,结合核苷酸的Ras与Sos结合,与Cdc25结构域和Ras交换基序(Rem)结构域接触。这种变构Ras结合刺激了Sos的核苷酸交换,但这种刺激发生的机制尚未明确。我们展示了在不存在Ras的情况下以2.0埃分辨率测定的Sos的Rem和Cdc25结构域的晶体结构。该结构与结合两个Ras分子的Sos结构之间的差异表明,Ras对Sos的变构激活是通过Rem结构域的旋转发生的,该旋转与Sos催化位点处的螺旋发夹的旋转相关联。这种运动缓解了催化位点的空间阻塞,允许底物Ras结合和核苷酸交换。以2.2埃分辨率测定的分离的RasGRF1 Cdc25结构域的结构,结合计算分析表明,RasGRF1的Cdc25结构域能够单独维持活性构象,因为螺旋发夹与Cdc25结构域核心的相互作用增强。这些结果表明,RasGRF1缺乏对Sos活性至关重要的变构激活开关。