Suppr超能文献

用于人脸识别的正交拉普拉斯脸

Orthogonal laplacianfaces for face recognition.

作者信息

Cai Deng, He Xiaofei, Han Jiawei, Zhang Hong-Jiang

出版信息

IEEE Trans Image Process. 2006 Nov;15(11):3608-14. doi: 10.1109/tip.2006.881945.

Abstract

Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at finding a linear approximation to the eigenfunctions of the Laplace Beltrami operator on the face manifold. However, LPP is nonorthogonal, and this makes it difficult to reconstruct the data. The orthogonal locality preserving projection (OLPP) method produces orthogonal basis functions and can have more locality preserving power than LPP. Since the locality preserving power is potentially related to the discriminating power, the OLPP is expected to have more discriminating power than LPP. Experimental results on three face databases demonstrate the effectiveness of our proposed algorithm.

摘要

基于自然出现的面部数据可能是通过对在环境空间子流形上或其附近有支撑的概率分布进行采样而生成的直觉,我们提出了一种基于外观的人脸识别方法,称为正交拉普拉斯脸。我们的算法基于局部保留投影(LPP)算法,该算法旨在找到面部流形上拉普拉斯 - 贝尔特拉米算子特征函数的线性近似。然而,LPP是非正交的,这使得数据重建变得困难。正交局部保留投影(OLPP)方法产生正交基函数,并且比LPP具有更强的局部保留能力。由于局部保留能力可能与辨别能力相关,因此预计OLPP比LPP具有更强的辨别能力。在三个面部数据库上的实验结果证明了我们提出的算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验