Suppr超能文献

变速条件下滚动轴承的早期故障检测

Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

作者信息

Xue Lang, Li Naipeng, Lei Yaguo, Li Ningbo

机构信息

Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Materials (Basel). 2017 Jun 20;10(6):675. doi: 10.3390/ma10060675.

Abstract

Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

摘要

变速工况给滚动轴承早期故障检测带来了巨大挑战,因为转速变化和故障都可能导致振动信号的幅值波动。需要开发有效的检测方法来消除转速变化的影响。本文提出了一种变速工况下轴承早期故障检测方法。首先,提取相对残差(RR)特征,其对变速工况不敏感且能够反映轴承的退化趋势。然后,构建一个名为选定负对数似然概率(SNLLP)的健康指标,以融合包括RR特征和无量纲特征的特征集。最后,基于构建的SNLLP健康指标,设计了一种新颖的报警触发机制来检测早期故障。利用轴承试验和工业风力涡轮机的振动信号对所提方法进行了验证。结果验证了所提方法在变速工况下对滚动轴承早期故障检测的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b51/5554056/63ee90fb89cd/materials-10-00675-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验