Suppr超能文献

用于生物标志物识别的依赖网络建模

Dependence network modeling for biomarker identification.

作者信息

Qiu Peng, Wang Z Jane, Liu K J Ray, Hu Zhang-Zhi, Wu Cathy H

机构信息

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA.

出版信息

Bioinformatics. 2007 Jan 15;23(2):198-206. doi: 10.1093/bioinformatics/btl553. Epub 2006 Oct 31.

Abstract

MOTIVATION

Our purpose is to develop a statistical modeling approach for cancer biomarker discovery and provide new insights into early cancer detection. We propose the concept of dependence network, apply it for identifying cancer biomarkers, and study the difference between the protein or gene samples from cancer and non-cancer subjects based on mass-spectrometry (MS) and microarray data.

RESULTS

Three MS and two gene microarray datasets are studied. Clear differences are observed in the dependence networks for cancer and non-cancer samples. Protein/gene features are examined three at one time through an exhaustive search. Dependence networks are constructed by binding triples identified by the eigenvalue pattern of the dependence model, and are further compared to identify cancer biomarkers. Such dependence-network-based biomarkers show much greater consistency under 10-fold cross-validation than the classification-performance-based biomarkers. Furthermore, the biological relevance of the dependence-network-based biomarkers using microarray data is discussed. The proposed scheme is shown promising for cancer diagnosis and prediction.

AVAILABILITY

See supplements: http://dsplab.eng.umd.edu/~genomics/dependencenetwork/

摘要

动机

我们的目的是开发一种用于癌症生物标志物发现的统计建模方法,并为早期癌症检测提供新的见解。我们提出了依赖网络的概念,将其应用于识别癌症生物标志物,并基于质谱(MS)和微阵列数据研究癌症和非癌症受试者的蛋白质或基因样本之间的差异。

结果

研究了三个质谱数据集和两个基因微阵列数据集。在癌症和非癌症样本的依赖网络中观察到明显差异。通过穷举搜索一次检查三个蛋白质/基因特征。依赖网络由依赖模型的特征值模式识别出的绑定三元组构建而成,并进一步进行比较以识别癌症生物标志物。与基于分类性能的生物标志物相比,这种基于依赖网络的生物标志物在10倍交叉验证下显示出更高的一致性。此外,还讨论了使用微阵列数据的基于依赖网络的生物标志物的生物学相关性。所提出的方案在癌症诊断和预测方面显示出前景。

可用性

见补充内容:http://dsplab.eng.umd.edu/~genomics/dependencenetwork/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验