Suppr超能文献

高维数据空间的特性:对探索基因和蛋白质表达数据的启示

The properties of high-dimensional data spaces: implications for exploring gene and protein expression data.

作者信息

Clarke Robert, Ressom Habtom W, Wang Antai, Xuan Jianhua, Liu Minetta C, Gehan Edmund A, Wang Yue

机构信息

Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA.

出版信息

Nat Rev Cancer. 2008 Jan;8(1):37-49. doi: 10.1038/nrc2294.

Abstract

High-throughput genomic and proteomic technologies are widely used in cancer research to build better predictive models of diagnosis, prognosis and therapy, to identify and characterize key signalling networks and to find new targets for drug development. These technologies present investigators with the task of extracting meaningful statistical and biological information from high-dimensional data spaces, wherein each sample is defined by hundreds or thousands of measurements, usually concurrently obtained. The properties of high dimensionality are often poorly understood or overlooked in data modelling and analysis. From the perspective of translational science, this Review discusses the properties of high-dimensional data spaces that arise in genomic and proteomic studies and the challenges they can pose for data analysis and interpretation.

摘要

高通量基因组和蛋白质组技术在癌症研究中被广泛应用,以构建更好的诊断、预后和治疗预测模型,识别和表征关键信号网络,并寻找药物开发的新靶点。这些技术给研究人员带来了从高维数据空间中提取有意义的统计和生物学信息的任务,其中每个样本由成百上千次测量定义,这些测量通常是同时获得的。在数据建模和分析中,高维特性常常未被充分理解或被忽视。从转化科学的角度来看,本综述讨论了基因组和蛋白质组研究中出现的高维数据空间的特性,以及它们在数据分析和解释方面可能带来的挑战。

相似文献

4
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
6
[Proteomic analysis: why and how ?].
Bull Cancer. 2001 Jul;88(7):663-70.
8
[Advances in high-throughput proteomic analysis].[高通量蛋白质组学分析的进展]
Se Pu. 2021 Feb;39(2):112-117. doi: 10.3724/SP.J.1123.2020.08023.

引用本文的文献

7
Random k conditional nearest neighbor for high-dimensional data.用于高维数据的随机k条件最近邻
PeerJ Comput Sci. 2025 Jan 24;11:e2497. doi: 10.7717/peerj-cs.2497. eCollection 2025.

本文引用的文献

9
Transcription regulation by mutant p53.突变型p53的转录调控
Oncogene. 2007 Apr 2;26(15):2202-11. doi: 10.1038/sj.onc.1210294.
10
Molecular definition of breast tumor heterogeneity.乳腺肿瘤异质性的分子定义。
Cancer Cell. 2007 Mar;11(3):259-73. doi: 10.1016/j.ccr.2007.01.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验