Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
BMC Bioinformatics. 2010 Sep 16;11:466. doi: 10.1186/1471-2105-11-466.
A molecular network perspective forms the foundation of systems biology. A common practice in analyzing protein-protein interaction (PPI) networks is to perform network analysis on a conglomerate network that is an assembly of all available binary interactions in a given organism from diverse data sources. Recent studies on network dynamics suggested that this approach might have ignored the dynamic nature of context-dependent molecular systems.
In this study, we employed a network stratification strategy to investigate the validity of the current network analysis on conglomerate PPI networks. Using the genome-scale tissue- and condition-specific proteomics data in Arabidopsis thaliana, we present here the first systematic investigation into this question. We stratified a conglomerate A. thaliana PPI network into three levels of context-dependent subnetworks. We then focused on three types of most commonly conducted network analyses, i.e., topological, functional and modular analyses, and compared the results from these network analyses on the conglomerate network and five stratified context-dependent subnetworks corresponding to specific tissues.
We found that the results based on the conglomerate PPI network are often significantly different from those of context-dependent subnetworks corresponding to specific tissues or conditions. This conclusion depends neither on relatively arbitrary cutoffs (such as those defining network hubs or bottlenecks), nor on specific network clustering algorithms for module extraction, nor on the possible high false positive rates of binary interactions in PPI networks. We also found that our conclusions are likely to be valid in human PPI networks. Furthermore, network stratification may help resolve many controversies in current research of systems biology.
分子网络视角构成了系统生物学的基础。分析蛋白质-蛋白质相互作用(PPI)网络的一种常见做法是在一个聚集体网络上进行网络分析,该网络是来自不同数据源的给定生物体中所有可用二元相互作用的组合。最近关于网络动态的研究表明,这种方法可能忽略了上下文相关分子系统的动态性质。
在这项研究中,我们采用网络分层策略来研究当前在聚集体 PPI 网络上进行网络分析的有效性。使用拟南芥的基因组规模组织和条件特异性蛋白质组学数据,我们首次对此问题进行了系统研究。我们将聚集体拟南芥 PPI 网络分层为三个层次的上下文相关子网。然后,我们专注于三种最常用的网络分析类型,即拓扑、功能和模块分析,并比较了这些网络分析在聚集体网络和五个对应于特定组织的分层上下文相关子网中的结果。
我们发现,基于聚集体 PPI 网络的结果通常与对应于特定组织或条件的上下文相关子网的结果有很大差异。这个结论既不依赖于相对任意的截止值(例如定义网络枢纽或瓶颈的截止值),也不依赖于模块提取的特定网络聚类算法,也不依赖于 PPI 网络中二元相互作用可能存在的高假阳性率。我们还发现,我们的结论可能在人类 PPI 网络中是有效的。此外,网络分层可能有助于解决系统生物学当前研究中的许多争议。