Zhang Bai, Li Huai, Riggins Rebecca B, Zhan Ming, Xuan Jianhua, Zhang Zhen, Hoffman Eric P, Clarke Robert, Wang Yue
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
Bioinformatics. 2009 Feb 15;25(4):526-32. doi: 10.1093/bioinformatics/btn660. Epub 2008 Dec 26.
Significant efforts have been made to acquire data under different conditions and to construct static networks that can explain various gene regulation mechanisms. However, gene regulatory networks are dynamic and condition-specific; under different conditions, networks exhibit different regulation patterns accompanied by different transcriptional network topologies. Thus, an investigation on the topological changes in transcriptional networks can facilitate the understanding of cell development or provide novel insights into the pathophysiology of certain diseases, and help identify the key genetic players that could serve as biomarkers or drug targets.
Here, we report a differential dependency network (DDN) analysis to detect statistically significant topological changes in the transcriptional networks between two biological conditions. We propose a local dependency model to represent the local structures of a network by a set of conditional probabilities. We develop an efficient learning algorithm to learn the local dependency model using the Lasso technique. A permutation test is subsequently performed to estimate the statistical significance of each learned local structure. In testing on a simulation dataset, the proposed algorithm accurately detected all the genes with network topological changes. The method was then applied to the estrogen-dependent T-47D estrogen receptor-positive (ER+) breast cancer cell line datasets and human and mouse embryonic stem cell datasets. In both experiments using real microarray datasets, the proposed method produced biologically meaningful results. We expect DDN to emerge as an important bioinformatics tool in transcriptional network analyses. While we focus specifically on transcriptional networks, the DDN method we introduce here is generally applicable to other biological networks with similar characteristics.
The DDN MATLAB toolbox and experiment data are available at http://www.cbil.ece.vt.edu/software.htm.
人们已经做出了巨大努力,在不同条件下获取数据并构建能够解释各种基因调控机制的静态网络。然而,基因调控网络是动态的且具有条件特异性;在不同条件下,网络呈现出不同的调控模式,并伴随着不同的转录网络拓扑结构。因此,对转录网络拓扑变化的研究有助于理解细胞发育,或为某些疾病的病理生理学提供新的见解,并有助于识别可作为生物标志物或药物靶点的关键基因参与者。
在此,我们报告了一种差异依赖网络(DDN)分析方法,用于检测两种生物学条件下转录网络中具有统计学意义的拓扑变化。我们提出了一种局部依赖模型,通过一组条件概率来表示网络的局部结构。我们开发了一种高效的学习算法,使用套索技术来学习局部依赖模型。随后进行置换检验,以估计每个学习到的局部结构的统计显著性。在对模拟数据集进行测试时,所提出的算法准确地检测到了所有具有网络拓扑变化的基因。然后将该方法应用于雌激素依赖性T-47D雌激素受体阳性(ER+)乳腺癌细胞系数据集以及人和小鼠胚胎干细胞数据集。在使用真实微阵列数据集的两个实验中,所提出的方法都产生了具有生物学意义的结果。我们期望DDN成为转录网络分析中的一种重要生物信息学工具。虽然我们特别关注转录网络,但我们在此介绍的DDN方法通常适用于具有类似特征的其他生物网络。
DDN MATLAB工具箱和实验数据可在http://www.cbil.ece.vt.edu/software.htm获取。