Nehls Uwe, Grunze Nina, Willmann Martin, Reich Marlis, Küster Helge
Physiologische Okologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
Phytochemistry. 2007 Jan;68(1):82-91. doi: 10.1016/j.phytochem.2006.09.024. Epub 2006 Oct 31.
Simple, readily utilizable carbohydrates, necessary for growth and maintenance of large numbers of microbes are rare in forest soils. Among other types of mutualistic interactions, the formation of ectomycorrhizas, a symbiosis between tree roots and certain soil fungi, is a way to overcome nutrient and carbohydrate limitations typical for many forest ecosystems. Ectomycorrhiza formation is typical for trees in boreal and temperate forests of the northern hemisphere and alpine regions world-wide. The main function of this symbiosis is the exchange of fungus-derived nutrients for plant-derived carbohydrates, enabling the colonization of mineral nutrient-poor environments. In ectomycorrhizal symbiosis up to 1/3 of plant photoassimilates could be transferred toward the fungal partner. The creation of such a strong sink is directly related to the efficiency of fungal hexose uptake at the plant/fungus interface, a modulated fungal carbohydrate metabolism in the ectomycorrhiza, and the export of carbohydrates towards soil growing hyphae. However, not only the fungus but also the plant partner increase its expression of hexose importer genes at the plant/fungus interface. This increase in hexose uptake capacity of plant roots in combination with an increase in photosynthesis may explain how the plant deals with the growing fungal carbohydrate demand in symbiosis and how it can restrict this loss of carbohydrates under certain conditions to avoid fungal parasitism.
对于大量微生物的生长和维持所必需的简单且易于利用的碳水化合物,在森林土壤中较为稀少。在其他类型的共生相互作用中,外生菌根的形成,即树根与某些土壤真菌之间的一种共生关系,是克服许多森林生态系统中典型的养分和碳水化合物限制的一种方式。外生菌根的形成在北半球寒温带森林和高山地区以及世界各地的树木中很典型。这种共生关系的主要功能是用真菌衍生的养分交换植物衍生的碳水化合物,从而使植物能够在贫矿质养分的环境中定殖。在菌根共生中,高达三分之一的植物光合产物可以转移到真菌伙伴那里。如此强大的碳水化合物汇的形成直接关系到真菌在植物/真菌界面摄取己糖的效率、外生菌根中经过调节的真菌碳水化合物代谢以及碳水化合物向土壤中生长的菌丝的输出。然而,不仅真菌,植物伙伴在植物/真菌界面也会增加其己糖转运蛋白基因的表达。植物根的己糖摄取能力的这种增加与光合作用的增强相结合,或许可以解释植物在共生状态下如何应对真菌对碳水化合物不断增长的需求,以及它如何在某些条件下限制这种碳水化合物的损失以避免真菌寄生。