Zhang Zichen, Shah Aabid Manzoor, Mohamed Hassan, Zhang Yao, Tsiklauri Nino, Song Yuanda
Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China.
Normal College, Jishou University, Xiangxi 416000, China.
J Fungi (Basel). 2021 Oct 5;7(10):835. doi: 10.3390/jof7100835.
is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by . In this study, we reported the genome sequence of SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.
是一种在生态和生物技术方面具有重要意义的木材降解担子菌,具有高木质纤维素降解能力。在蜡壳耳属中,生物学和遗传学研究有限,因此阻碍了基因改造和商业应用。本研究的目的是通过基因组和实验研究,全面了解利用木质纤维素生物质的情况。在本研究中,我们使用Illumina和PacBio 20平台报道了SP02的基因组序列,以获得可靠的组装和注释。这是蜡壳耳属物种的第二次和第三次基因组测序与组装相结合。生成的基因组大小为42.79 Mb,N50重叠群大小为2.48 Mb,G + C含量为47.43%,编码12277个预测基因。编码各种木质纤维素分解酶的基因,包括漆酶、木质素过氧化物酶、锰过氧化物酶、细胞色素P450、纤维素酶、木聚糖酶、α-淀粉酶和果胶酶,参与木质素、纤维素、木聚糖、淀粉、果胶和几丁质的降解,这表明SP02在木质纤维素生物质转化中可能具有广泛的应用。基因组规模的代谢分析为更好地理解碳水化合物活性酶(CAZymes)和氧化还原酶开辟了宝贵的资源,这些酶为木质纤维素降解的遗传基础和分子机制提供了见解。SP02模型可用于木质纤维素工业中高效微生物细胞工厂的开发。对编码木质纤维素分解酶的SP02遗传物质的理解将在基因操作、定点诱变和工业生物技术方面使我们受益匪浅。