Suppr超能文献

与重度幼儿龋齿相关的口腔微生物群的基因图谱分析。

Genetic profiling of the oral microbiota associated with severe early-childhood caries.

作者信息

Li Y, Ge Y, Saxena D, Caufield P W

机构信息

Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.

出版信息

J Clin Microbiol. 2007 Jan;45(1):81-7. doi: 10.1128/JCM.01622-06. Epub 2006 Nov 1.

Abstract

The determination of the composition of the microbial community in the oral cavity is usually based on cultivation methods; however, nearly half of the bacteria in the saliva and the dental plaque are not cultivable. In this study, we evaluated the difference in oral microbial diversity between children with severe early-childhood caries (S-ECC) and caries-free (CF) controls by means of a cultivation-independent approach called denaturing gradient gel electrophoresis (DGGE). Pooled dental plaque samples were collected from 20 children aged 2 to 8 years. Total microbial genomic DNA was isolated from those subjects, and a portion of the 16S rRNA gene locus was PCR amplified by using universal primers. We observed that the mean species richness of the bacterial population was greater in the CF children (n = 12) (42 +/- 3.7) than in the S-ECC children (n = 8) (35 +/- 4.3); the difference was statistically significant (P = 0.005). The overall diversity of plaque samples as measured by the Shannon index was 3.5 for the S-ECC group and 3.7 for the CF group (P = 0.004). Differences in DGGE profiles were distinguished on the basis of a cluster analysis. Sequence analysis of excised DGGE bands consisted of 2.7 phylotypes, on average. After adjusting for the number of observed bands, we estimated that the S-ECC group exhibited 94.5 total phylotypes and that the CF group exhibited 113.4. These results suggest that the microbial diversity and complexity of the microbial biota in dental plaque are significantly less in S-ECC children than in CF children.

摘要

口腔微生物群落组成的确定通常基于培养方法;然而,唾液和牙菌斑中近一半的细菌是不可培养的。在本研究中,我们通过一种名为变性梯度凝胶电泳(DGGE)的非培养方法,评估了重度幼儿早期龋(S-ECC)儿童与无龋(CF)对照儿童口腔微生物多样性的差异。从20名2至8岁的儿童中收集混合牙菌斑样本。从这些受试者中分离出总微生物基因组DNA,并使用通用引物对16S rRNA基因位点的一部分进行PCR扩增。我们观察到,CF儿童(n = 12)(42 +/- 3.7)的细菌种群平均物种丰富度高于S-ECC儿童(n = 8)(35 +/- 4.3);差异具有统计学意义(P = 0.005)。通过香农指数测量,S-ECC组菌斑样本的总体多样性为3.5,CF组为3.7(P = 0.004)。基于聚类分析区分了DGGE图谱的差异。切除的DGGE条带的序列分析平均由2.7个系统发育型组成。在调整观察到的条带数量后,我们估计S-ECC组共有94.5个系统发育型,CF组有113.4个。这些结果表明,S-ECC儿童牙菌斑中微生物群落的多样性和复杂性明显低于CF儿童。

相似文献

1
Genetic profiling of the oral microbiota associated with severe early-childhood caries.
J Clin Microbiol. 2007 Jan;45(1):81-7. doi: 10.1128/JCM.01622-06. Epub 2006 Nov 1.
2
Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE.
Arch Oral Biol. 2013 Sep;58(9):1129-38. doi: 10.1016/j.archoralbio.2013.04.005. Epub 2013 May 9.
6
Polymerase chain reaction-based denaturing gradient gel electrophoresis in the evaluation of oral microbiota.
Oral Microbiol Immunol. 2006 Oct;21(5):333-9. doi: 10.1111/j.1399-302X.2006.00301.x.
7
Association between Oral Candida and Bacteriome in Children with Severe ECC.
J Dent Res. 2018 Dec;97(13):1468-1476. doi: 10.1177/0022034518790941. Epub 2018 Jul 26.
8
Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing.
Microb Ecol. 2010 Oct;60(3):677-90. doi: 10.1007/s00248-010-9712-8. Epub 2010 Jul 8.
9
[Bacterial diversity in the oral cavity of adolescents with different caries susceptibilities].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2015 Dec;33(6):602-6. doi: 10.7518/hxkq.2015.06.011.
10
Bacterial profiles of root caries in elderly patients.
J Clin Microbiol. 2008 Jun;46(6):2015-21. doi: 10.1128/JCM.02411-07. Epub 2008 Apr 2.

引用本文的文献

2
Microbial shifts in dental plaque of children with severe early childhood caries following comprehensive dental treatment under general anesthesia.
Front Cell Infect Microbiol. 2025 May 2;15:1541785. doi: 10.3389/fcimb.2025.1541785. eCollection 2025.
3
Inhibitory effect of helium cold atmospheric plasma on cariogenic biofilms.
J Oral Microbiol. 2024 Sep 9;16(1):2397831. doi: 10.1080/20002297.2024.2397831. eCollection 2024.
4
A cross-cohort analysis of dental plaque microbiome in early childhood caries.
iScience. 2024 Jul 4;27(8):110447. doi: 10.1016/j.isci.2024.110447. eCollection 2024 Aug 16.
5
The Evolving Microbiome of Dental Caries.
Microorganisms. 2024 Jan 7;12(1):121. doi: 10.3390/microorganisms12010121.
6
Multiomics analysis reveals the genetic and metabolic characteristics associated with the low prevalence of dental caries.
J Oral Microbiol. 2023 Nov 2;15(1):2277271. doi: 10.1080/20002297.2023.2277271. eCollection 2023.
7
Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques.
Microorganisms. 2023 Mar 24;11(4):836. doi: 10.3390/microorganisms11040836.
8
Fluoride and gallein inhibit polyphosphate accumulation by oral pathogen Rothia dentocariosa.
Lett Appl Microbiol. 2023 Feb 16;76(2). doi: 10.1093/lambio/ovad017.
9
Does high sugar intake really alter the oral microbiota?: A systematic review.
Clin Exp Dent Res. 2022 Dec;8(6):1376-1390. doi: 10.1002/cre2.640. Epub 2022 Aug 9.
10
Comparison of the Oral Microbiota Structure among People from the Same Ethnic Group Living in Different Environments.
Biomed Res Int. 2022 Jun 17;2022:6544497. doi: 10.1155/2022/6544497. eCollection 2022.

本文引用的文献

1
Polymerase chain reaction-based denaturing gradient gel electrophoresis in the evaluation of oral microbiota.
Oral Microbiol Immunol. 2006 Oct;21(5):333-9. doi: 10.1111/j.1399-302X.2006.00301.x.
2
Microbial risk indicators of early childhood caries.
J Clin Microbiol. 2005 Nov;43(11):5753-9. doi: 10.1128/JCM.43.11.5753-5759.2005.
3
Defining the normal bacterial flora of the oral cavity.
J Clin Microbiol. 2005 Nov;43(11):5721-32. doi: 10.1128/JCM.43.11.5721-5732.2005.
4
The complex oral microflora of high-risk individuals and groups and its role in the caries process.
Community Dent Oral Epidemiol. 2005 Aug;33(4):248-55. doi: 10.1111/j.1600-0528.2005.00232.x.
5
Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms.
Arch Oral Biol. 2005 Sep;50(9):779-87. doi: 10.1016/j.archoralbio.2005.02.001. Epub 2005 Mar 5.
6
Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis.
J Dent Res. 2005 Jun;84(6):559-64. doi: 10.1177/154405910508400614.
7
The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6. doi: 10.1093/nar/gki038.
8
Denaturing gradient gel electrophoresis analysis of bacterial communities associated with failed endodontic treatment.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004 Dec;98(6):741-9. doi: 10.1016/j.tripleo.2004.09.006.
9
Application of molecular fingerprinting for qualitative assessment of small-intestinal bacterial diversity in dogs.
J Clin Microbiol. 2004 Oct;42(10):4702-8. doi: 10.1128/JCM.42.10.4702-4708.2004.
10
Molecular analysis of the microflora associated with dental caries.
J Clin Microbiol. 2004 Jul;42(7):3023-9. doi: 10.1128/JCM.42.7.3023-3029.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验