Khan Mohd Wasif, Fung Daryl Lerh Xing, Schroth Robert J, Chelikani Prashen, Hu Pingzhao
Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
iScience. 2024 Jul 4;27(8):110447. doi: 10.1016/j.isci.2024.110447. eCollection 2024 Aug 16.
Early childhood caries (ECC) is a multifactorial disease with a microbiome playing a significant role in caries progression. Understanding changes at the microbiome level in ECC is required to develop diagnostic and preventive strategies. In our study, we combined data from small independent cohorts to compare microbiome composition using a unified pipeline and applied a batch correction to avoid the pitfalls of batch effects. Our meta-analysis identified common biomarker species between different studies. We identified the best machine learning method for the classification of ECC versus caries-free samples and compared the performance of this method using a leave-one-dataset-out approach. Our random forest model was found to be generalizable when used in combination with other studies. While our results highlight the potential microbial species involved in ECC and disease classification, we also mentioned the limitations that can serve as a guide for future researchers to design and use appropriate tools for such analyses.
幼儿龋(ECC)是一种多因素疾病,微生物群在龋齿进展中起重要作用。为了制定诊断和预防策略,需要了解ECC在微生物群水平上的变化。在我们的研究中,我们合并了来自小型独立队列的数据,使用统一流程比较微生物群组成,并应用批次校正以避免批次效应的陷阱。我们的荟萃分析确定了不同研究之间的常见生物标志物种类。我们确定了用于区分ECC与无龋样本的最佳机器学习方法,并使用留一数据集法比较了该方法的性能。我们发现,当与其他研究结合使用时,我们的随机森林模型具有通用性。虽然我们的结果突出了ECC中涉及的潜在微生物种类和疾病分类,但我们也提到了局限性,可为未来研究人员设计和使用合适的此类分析工具提供指导。