Buczek Pawel, Horvath Martin P
Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
J Biol Chem. 2006 Dec 29;281(52):40124-34. doi: 10.1074/jbc.M607749200. Epub 2006 Nov 2.
In Sterkiella nova, alpha and beta telomere proteins bind cooperatively with single-stranded DNA to form a ternary alpha.beta.DNA complex. Association of telomere protein subunits is DNA-dependent, and alpha-beta association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, alpha and DNA first form a stable alpha.DNA complex followed by the addition of beta in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different, with DeltaCp = -305 +/- 3 cal mol(-1) K(-1) for alpha binding with DNA and DeltaCp = -2010 +/- 20 cal mol(-1) K(-1) for the addition of beta to complete the alpha.beta.DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed alpha.beta complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of beta. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length beta or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of beta.
在新斯特氏菌中,α和β端粒蛋白与单链DNA协同结合,形成三元α.β.DNA复合物。端粒蛋白亚基的结合是依赖DNA的,α-β结合增强了DNA亲和力。为了进一步了解结合协同性的分子基础,我们使用等温滴定量热法对几种可能的逐步组装途径进行了表征。在一条途径中,α和DNA首先形成稳定的α.DNA复合物,然后在第二步中加入β。这些步骤中的每一步,结合能都以几乎相等的结合自由能积累。然而,热容却有显著差异,α与DNA结合时的ΔCp = -305 ± 3 cal mol⁻¹ K⁻¹,而加入β以形成完整的α.β.DNA复合物时的ΔCp = -2010 ± 20 cal mol⁻¹ K⁻¹。通过研究包括用预先形成的α.β复合物滴定单链DNA在内的替代途径,很大一部分结合能和热容可归因于涉及蛋白质-蛋白质相互作用和DNA重新定位的结构重组。结构重组可能提供了一种调节端粒单链DNA高亲和力结合的机制,这对端粒生物学具有重要意义。端粒复合物解离的调节被认为涉及β富含赖氨酸的C末端部分的翻译后修饰。当比较用全长β或C末端截短形式制备的复合物时,我们在结合能或晶体结构上没有观察到差异,这支持了组蛋白内在无序区域与β的这一部分之间有趣的相似之处。