Suppr超能文献

黏细菌子实体形成的三维模型。

A three-dimensional model of myxobacterial fruiting-body formation.

作者信息

Sozinova Olga, Jiang Yi, Kaiser Dale, Alber Mark

机构信息

Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17255-9. doi: 10.1073/pnas.0605555103. Epub 2006 Nov 6.

Abstract

Myxobacterial cells are social; they swarm by gliding on surfaces as they feed cooperatively. When they sense starvation, tens of thousands of cells change their movement pattern from outward spreading to inward concentration and form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction that shares many features of chemical reaction-diffusion dynamics. The biological evidence, however, suggests that Myxococcus xanthus aggregation is the consequence of direct cell-contact interactions that are different from chemotaxis. To test whether local interactions suffice to explain the formation of fruiting bodies and the differentiation of spores within them, we have simulated the process. In this article, we present a unified 3D model that reproduces in one continuous simulation all the stages of fruiting-body formation that have been experimentally observed: nonsymmetric initial aggregates (traffic jams), streams, formation of toroidal aggregates, hemispherical 3D mounds, and finally sporulation within the fruiting body.

摘要

粘细菌细胞具有社会性;它们在进食时通过在表面滑动而聚集在一起。当它们感知到饥饿时,数以万计的细胞会将其运动模式从向外扩散转变为向内聚集,并形成聚集体,这些聚集体会变成子实体。子实体内的细胞会分化成圆形、无运动能力、具有环境抗性的孢子。传统上,细胞聚集被认为意味着趋化作用,这是一种远程细胞相互作用,具有许多化学反应扩散动力学的特征。然而,生物学证据表明,黄色粘球菌的聚集是直接细胞接触相互作用的结果,这与趋化作用不同。为了测试局部相互作用是否足以解释子实体的形成以及其中孢子的分化,我们对这一过程进行了模拟。在本文中,我们提出了一个统一的三维模型,该模型在一个连续的模拟中再现了所有已通过实验观察到的子实体形成阶段:非对称初始聚集体(交通堵塞)、溪流、环形聚集体的形成、半球形三维丘,以及最终子实体内的孢子形成。

相似文献

1
A three-dimensional model of myxobacterial fruiting-body formation.黏细菌子实体形成的三维模型。
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17255-9. doi: 10.1073/pnas.0605555103. Epub 2006 Nov 6.
5
Interconnected cavernous structure of bacterial fruiting bodies.细菌子实体的互联腔隙结构。
PLoS Comput Biol. 2012;8(12):e1002850. doi: 10.1371/journal.pcbi.1002850. Epub 2012 Dec 27.
8
Dynamics of fruiting body morphogenesis.子实体形态发生的动力学
J Bacteriol. 2004 Feb;186(4):919-27. doi: 10.1128/JB.186.4.919-927.2004.
9
Spatial simulations of myxobacterial development.粘细菌发育的空间模拟。
PLoS Comput Biol. 2010 Feb 26;6(2):e1000686. doi: 10.1371/journal.pcbi.1000686.

引用本文的文献

10
Interconnected cavernous structure of bacterial fruiting bodies.细菌子实体的互联腔隙结构。
PLoS Comput Biol. 2012;8(12):e1002850. doi: 10.1371/journal.pcbi.1002850. Epub 2012 Dec 27.

本文引用的文献

1
3
Reversing cell polarity: evidence and hypothesis.逆转细胞极性:证据与假说。
Curr Opin Microbiol. 2005 Apr;8(2):216-21. doi: 10.1016/j.mib.2005.02.002.
5
Two-stage aggregate formation via streams in myxobacteria.粘细菌中通过流形成两阶段聚集体。
Phys Rev Lett. 2004 Aug 6;93(6):068102. doi: 10.1103/PhysRevLett.93.068102. Epub 2004 Aug 4.
6
Breaking symmetry in myxobacteria.黏细菌中的对称性破缺
Curr Biol. 2004 Jun 22;14(12):R459-62. doi: 10.1016/j.cub.2004.06.007.
7
Pulling together with type IV pili.与IV型菌毛一起牵拉。
J Mol Microbiol Biotechnol. 2004;7(1-2):52-62. doi: 10.1159/000077869.
8
Dynamics of fruiting body morphogenesis.子实体形态发生的动力学
J Bacteriol. 2004 Feb;186(4):919-27. doi: 10.1128/JB.186.4.919-927.2004.
10
How myxobacteria glide.粘细菌如何滑行。
Curr Biol. 2002 Mar 5;12(5):369-77. doi: 10.1016/s0960-9822(02)00716-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验