Suppr超能文献

光子的单模热传导。

Single-mode heat conduction by photons.

作者信息

Meschke Matthias, Guichard Wiebke, Pekola Jukka P

机构信息

Low Temperature Laboratory, Helsinki University of Technology, PO Box 3500, 02015 TKK, Finland.

出版信息

Nature. 2006 Nov 9;444(7116):187-90. doi: 10.1038/nature05276.

Abstract

The thermal conductance of a single channel is limited by its unique quantum value G(Q), as was shown theoretically in 1983. This result closely resembles the well-known quantization of electrical conductance in ballistic one-dimensional conductors. Interestingly, all particles-irrespective of whether they are bosons or fermions-have the same quantized thermal conductance when they are confined within dimensions that are small compared to their characteristic wavelength. The single-mode heat conductance is particularly relevant in nanostructures. Quantized heat transport through submicrometre dielectric wires by phonons has been observed, and it has been predicted to influence cooling of electrons in metals at very low temperatures due to electromagnetic radiation. Here we report experimental results showing that at low temperatures heat is transferred by photon radiation, when electron-phonon as well as normal electronic heat conduction is frozen out. We study heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads, which are ideal insulators against conventional thermal conduction. Each superconducting lead is interrupted by a switch of electromagnetic (photon) radiation in the form of a DC-SQUID (a superconducting loop with two Josephson tunnel junctions). We find that the thermal conductance between the two metal islands mediated by photons indeed approaches the expected quantum limit of G(Q) at low temperatures. Our observation has practical implications-for example, for the performance and design of ultra-sensitive bolometers (detectors of far-infrared light) and electronic micro-refrigerators, whose operation is largely dependent on weak thermal coupling between the device and its environment.

摘要

单通道的热导率受其独特的量子值G(Q)限制,这在1983年已从理论上得到证明。这一结果与弹道一维导体中众所周知的电导量子化非常相似。有趣的是,所有粒子——无论它们是玻色子还是费米子——当被限制在与其特征波长相比很小的维度内时,都具有相同的量子化热导率。单模热导率在纳米结构中尤为重要。已经观察到声子通过亚微米介电导线的量子化热传输,并且据预测,由于电磁辐射,它会在极低温下影响金属中电子的冷却。在此,我们报告实验结果表明,在低温下,当电子 - 声子以及正常电子热传导被冻结时,热量通过光子辐射传递。我们研究了两块正常金属之间的热交换,它们仅通过超导引线相互连接,超导引线是常规热传导的理想绝缘体。每个超导引线都被一个以直流超导量子干涉器件(一种带有两个约瑟夫森隧道结的超导环)形式的电磁(光子)辐射开关中断。我们发现,由光子介导的两个金属岛之间的热导率在低温下确实接近预期的量子极限G(Q)。我们的观察具有实际意义——例如,对于超灵敏测辐射热计(远红外光探测器)和电子微冰箱的性能及设计而言,它们的运行在很大程度上依赖于器件与其环境之间的弱热耦合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验