Ho Emily, Lowman Anthony, Marcolongo Michele
Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA.
Biomacromolecules. 2006 Nov;7(11):3223-8. doi: 10.1021/bm0602536.
Injectable polymers are attractive materials for the fixation or augmentation of soft tissues. Thermosensitive hydrogels, especially poly(N-isopropylacryamide), have been investigated for these applications to exploit the lower critical solution temperature (LCST) which falls between room and body temperatures. One limitation to the material is the ability to withstand loading. In this work, we evaluated an injectable material system, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate, with the addition of trimethacryloxypropyltrimethoxysilane (MPS). Our goal was to investigate the potential to tune the mechanical behavior of the injectable hydrogel. Addition of MPS to the hydrogel increased the compressive modulus but did not affect the LCST of the hydrogel. An increase in ion concentration of the immersion media resulted in less solution uptake by the hydrogels, regardless of MPS presence in the system. The challenge of this material system is to balance the network-forming and modulus-enhancing MPS while maintaining an injectable hydrogel for potential soft tissue repair.