Aquilante Francesco, Pedersen Thomas Bondo, Sánchez de Merás Alfredo, Koch Henrik
Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden.
J Chem Phys. 2006 Nov 7;125(17):174101. doi: 10.1063/1.2360264.
We use Cholesky decomposition of the density matrix in atomic orbital basis to define a new set of occupied molecular orbital coefficients. Analysis of the resulting orbitals ("Cholesky molecular orbitals") demonstrates their localized character inherited from the sparsity of the density matrix. Comparison with the results of traditional iterative localization schemes shows minor differences with respect to a number of suitable measures of locality, particularly the scaling with system size of orbital pair domains used in local correlation methods. The Cholesky procedure for generating orthonormal localized orbitals is noniterative and may be made linear scaling. Although our present implementation scales cubically, the algorithm is significantly faster than any of the conventional localization schemes. In addition, since this approach does not require starting orbitals, it will be useful in local correlation treatments on top of diagonalization-free Hartree-Fock optimization algorithms.
我们在原子轨道基组中使用密度矩阵的Cholesky分解来定义一组新的占据分子轨道系数。对所得轨道(“Cholesky分子轨道”)的分析表明,它们具有从密度矩阵的稀疏性继承而来的定域特征。与传统迭代定域方案的结果比较表明,在一些合适的定域性度量方面存在微小差异,特别是在局部相关方法中使用的轨道对域随系统大小的缩放情况。生成正交定域轨道的Cholesky过程是非迭代的,并且可以实现线性缩放。虽然我们目前的实现是立方缩放,但该算法比任何传统定域方案都要快得多。此外,由于这种方法不需要起始轨道,它将在无对角化Hartree-Fock优化算法之上的局部相关处理中有用。