Piris M, Ugalde J M
Kimika Fakultatea, Euskal Herriko Unibertsitatea, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
J Comput Chem. 2009 Oct;30(13):2078-86. doi: 10.1002/jcc.21225.
A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated.
自然轨道泛函理论中的一项具有挑战性的任务是找到一种有效的轨道优化程序。基于对角化技术的程序已证实其实用价值,因为由此产生的轨道是自动正交的。在这项工作中,引入了一种新程序,它通过对厄米矩阵F进行迭代对角化来产生自然轨道。后者的非对角元素由拉格朗日乘子矩阵的厄米性明确确定。不存在对角元素的表达式,因此在传统意义上广义福克算符是未定义的,不过,它们可以根据构造原理来确定。因此,迭代地将由用哈特里 - 福克轨道计算的拉格朗日乘子矩阵在占据数优化后进行一次对角化得到的值作为起始值来获得对角元素。该方法已针对皮里斯自然轨道泛函在G2/97分子集上进行了测试。为了帮助收敛,我们实现了一个可变缩放因子,它避免了F的非对角元素出现大值。将所提出程序所需计算的耗时与完全顺序二次规划优化进行了比较,从而证明了此处提出的方法的效率。