Rauchenzauner Markus, Schmid Andrea, Heinz-Erian Peter, Kapelari Klaus, Falkensammer Gerda, Griesmacher Andrea, Finkenstedt Gerd, Högler Wolfgang
Department of Pediatrics 1, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
J Clin Endocrinol Metab. 2007 Feb;92(2):443-9. doi: 10.1210/jc.2006-1706. Epub 2006 Nov 14.
This study aimed to establish sex- and age-specific reference curves enabling the calculation of z-scores and to examine correlations between bone markers and anthropometric data.
Morning blood samples were obtained from 572 healthy children and adolescents (300 boys) aged 2 months to 18 yr. Height, weight, and pubertal stage were recorded. Serum osteocalcin (OC), bone-specific alkaline phosphatase (BALP), type-1 collagen degradation markers [carboxyterminal telopeptide region of type I collagen (ICTP), carboxyterminal telopeptide alpha1 chain of type I collagen (CTX)], and tartrate-resistant acid phosphatase (TRAP5b) were measured. Cross-sectional centile charts were created for the 3rd, 50th, and 97th centiles.
Apart from TRAP5b, all bone markers were nonnormally distributed, requiring logarithmic (BALP, OC, ICTP) or square root (CTX) transformation. Back-transformed centile curves for age and sex are presented for practical use. All bone markers varied with age and pubertal stage (P < 0.001). Significant correlations were found between sd score (SDS) for bone formation markers BALP and OC (r = 0.13; P = 0.004), SDS for collagen degradation markers ICTP and CTX (r = 0.14; P = 0.002), and SDS for the phosphatases (r = 0.34, P < 0.001). Height and weight SDS correlated weakly with some bone marker SDS, particularly with lnBALP SDS (r = 0.20 and 0.24, respectively; both P < 0.001).
This study provides reference curves for OC, BALP, CTX, ICTP, and TRAP5b in healthy children. Taller and heavier individuals for age had greater bone marker concentrations, likely reflecting greater growth velocity. SDS for markers of bone formation, collagen degradation, and phosphatases were each independently correlated, suggesting they derive from the same biological processes. The possibility of calculating SDS will facilitate monitoring of antiresorptive therapy or disease progression in children with metabolic bone disease.
本研究旨在建立性别和年龄特异性参考曲线,以便能够计算z分数,并研究骨标志物与人体测量数据之间的相关性。
采集了572名年龄在2个月至18岁的健康儿童和青少年(300名男孩)的清晨血样。记录身高、体重和青春期阶段。检测血清骨钙素(OC)、骨特异性碱性磷酸酶(BALP)、I型胶原降解标志物[I型胶原羧基末端肽区域(ICTP)、I型胶原羧基末端α1链(CTX)]和抗酒石酸酸性磷酸酶(TRAP5b)。绘制了第3、50和97百分位数的横断面百分位图。
除TRAP5b外,所有骨标志物均呈非正态分布,需要进行对数(BALP、OC、ICTP)或平方根(CTX)转换。给出了经逆转换后的年龄和性别百分位曲线以供实际使用。所有骨标志物均随年龄和青春期阶段而变化(P < 0.001)。骨形成标志物BALP和OC的标准差评分(SDS)之间存在显著相关性(r = 0.13;P = 0.004),胶原降解标志物ICTP和CTX的SDS之间存在显著相关性(r = 0.14;P = 0.002),磷酸酶的SDS之间存在显著相关性(r = 0.34,P < 0.001)。身高和体重SDS与一些骨标志物SDS的相关性较弱,尤其是与lnBALP SDS的相关性(分别为r = 0.20和0.24;均P < 0.001)。
本研究提供了健康儿童OC、BALP、CTX、ICTP和TRAP5b的参考曲线。年龄较大且较重的个体骨标志物浓度较高,这可能反映了较高的生长速度。骨形成、胶原降解和磷酸酶标志物的SDS各自独立相关,表明它们源自相同的生物学过程。计算SDS的可能性将有助于监测患有代谢性骨病儿童的抗吸收治疗或疾病进展。