Li Jinhui, Yang Xiaowei, Wu Yingnian, Shoptaw Steven
UCLA-Department of Statistics, PO Box 951554, Los Angeles, CA 90095-1554, USA.
Stat Med. 2007 May 30;26(12):2519-32. doi: 10.1002/sim.2717.
In biomedical research with longitudinal designs, missing values due to intermittent non-response or premature withdrawal are usually 'non-ignorable' in the sense that unobserved values are related to the patterns of missingness. By drawing the framework of a shared-parameter mechanism, the process yielding the repeated count measures and the process yielding missing values can be modelled separately, conditionally on a group of shared parameters. For chronic diseases, Markov transition models can be used to study the transitional features of the pathologic processes. In this paper, Markov Chain Monte Carlo algorithms are developed to fit a random-effects Markov transition model for incomplete count repeated measures, within which random effects are shared by the counting process and the missing-data mechanism. Assuming a Poisson distribution for the count measures, the transition probabilities are estimated using a Poisson regression model. The missingness mechanism is modelled with a multinomial-logit regression to calculate the transition probabilities of the missingness indicators. The method is demonstrated using both simulated data sets and a practical data set from a smoking cessation clinical trial.
在采用纵向设计的生物医学研究中,由于间歇性无应答或提前退出导致的缺失值通常是“不可忽略的”,因为未观测到的值与缺失模式相关。通过构建共享参数机制框架,产生重复计数测量值的过程和产生缺失值的过程可以在一组共享参数的条件下分别进行建模。对于慢性病,马尔可夫转移模型可用于研究病理过程的过渡特征。本文开发了马尔可夫链蒙特卡罗算法,以拟合用于不完全计数重复测量的随机效应马尔可夫转移模型,其中计数过程和缺失数据机制共享随机效应。假设计数测量值服从泊松分布,使用泊松回归模型估计转移概率。缺失机制采用多项逻辑回归建模,以计算缺失指标的转移概率。该方法通过模拟数据集和来自戒烟临床试验的实际数据集进行了演示。