Buteau Jean, Shlien Adam, Foisy Sylvain, Accili Domenico
Berrie Diabetes Center, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA.
J Biol Chem. 2007 Jan 5;282(1):287-93. doi: 10.1074/jbc.M606118200. Epub 2006 Nov 15.
Diabetes is associated with decreased pancreatic beta-cell function and mass. It is unclear whether diabetes treatment should aim at restoring beta-cell performance/mass or at inducing "beta-cell rest" to prevent further deterioration. The transcription factor Foxo1 protects beta-cells against oxidative stress induced by hyperglycemia and prevents beta-cell replication in insulin-resistant states. Here we show that these combined effects are associated with a concerted repression of genes involved in glycolysis, nitric-oxide synthesis, G protein-coupled receptor signaling, and ion transport. Conversely, Foxo1 increases expression of several neurotransmitter receptors and fails to regulate target genes predicted from Caenorhabditis elegans and Drosophila studies. Functional analyses show decreased glucose utilization and insulin secretion in beta-cells overexpressing Foxo1. We propose the definition of "metabolic diapause" for the changes induced by Foxo1 to protect beta-cells against oxidative stress. The data provide genetic underpinning for the concept of beta-cell rest as a treatment goal in diabetes.
糖尿病与胰腺β细胞功能和数量的降低有关。目前尚不清楚糖尿病治疗的目标应该是恢复β细胞功能/数量,还是诱导“β细胞休息”以防止进一步恶化。转录因子Foxo1可保护β细胞免受高血糖诱导的氧化应激,并在胰岛素抵抗状态下阻止β细胞复制。在此,我们表明这些综合效应与糖酵解、一氧化氮合成、G蛋白偶联受体信号传导和离子转运相关基因的协同抑制有关。相反,Foxo1增加了几种神经递质受体的表达,并且未能调节秀丽隐杆线虫和果蝇研究预测的靶基因。功能分析表明,过表达Foxo1的β细胞中葡萄糖利用和胰岛素分泌减少。我们提出将Foxo1诱导的变化定义为“代谢滞育”,以保护β细胞免受氧化应激。这些数据为β细胞休息作为糖尿病治疗目标的概念提供了遗传学依据。