Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan.
Mol Metab. 2022 Jan;55:101414. doi: 10.1016/j.molmet.2021.101414. Epub 2021 Dec 3.
Age is a risk factor for type 2 diabetes (T2D). We aimed to elucidate whether β-cell glucose metabolism is altered with aging and contributes to T2D.
We used senescence-accelerated mice (SAM), C57BL/6J (B6) mice, and ob/ob mice as aging models. As a diabetes model, we used db/db mice. The glucose responsiveness of insulin secretion and the [U-C]-glucose metabolic flux were examined in isolated islets. We analyzed the expression of β-cell-specific genes in isolated islets and pancreatic sections as molecular signatures of β-cell identity. β cells defective in the malate-aspartate (MA) shuttle were previously generated from MIN6-K8 cells by the knockout of Got1, a component of the shuttle. We analyzed Got1 KO β cells as a model of increased glycolysis.
We identified hyperresponsiveness to glucose and compromised cellular identity as dysfunctional phenotypes shared in common between aged and diabetic mouse β cells. We also observed a metabolic commonality between aged and diabetic β cells: hyperactive glycolysis through the increased expression of nicotinamide mononucleotide adenylyl transferase 2 (Nmnat2), a cytosolic nicotinamide adenine dinucleotide (NAD)-synthesizing enzyme. Got1 KO β cells showed increased glycolysis, β-cell dysfunction, and impaired cellular identity, phenocopying aging and diabetes. Using Got1 KO β cells, we show that attenuation of glycolysis or Nmnat2 activity can restore β-cell function and identity.
Our study demonstrates that hyperactive glycolysis is a metabolic signature of aged and diabetic β cells, which may underlie age-related β-cell dysfunction and loss of cellular identity. We suggest Nmnat2 suppression as an approach to counteract age-related T2D.
年龄是 2 型糖尿病(T2D)的一个危险因素。我们旨在阐明β细胞葡萄糖代谢是否随年龄而改变,并导致 T2D。
我们使用衰老加速小鼠(SAM)、C57BL/6J(B6)小鼠和 ob/ob 小鼠作为衰老模型。我们使用 db/db 小鼠作为糖尿病模型。在分离的胰岛中检查胰岛素分泌的葡萄糖反应性和 [U-C]-葡萄糖代谢通量。我们分析了分离胰岛和胰腺切片中β细胞特异性基因的表达,作为β细胞特征的分子特征。先前通过敲除穿梭的组成部分 Got1,从 MIN6-K8 细胞中产生了β细胞中苹果酸-天冬氨酸(MA)穿梭缺陷型细胞。我们将 Got1 KO 细胞作为增加糖酵解的模型进行了分析。
我们发现葡萄糖超反应性和细胞特征丧失是老年和糖尿病小鼠β细胞之间共同存在的功能障碍表型。我们还观察到老年和糖尿病β细胞之间存在代谢共性:通过增加胞质烟酰胺腺嘌呤二核苷酸(NAD)合成酶尼克酰胺单核苷酸腺嘌呤二核苷酸转酰胺酶 2(Nmnat2)的表达,使糖酵解过度活跃。Got1 KO 细胞表现出增加的糖酵解、β细胞功能障碍和细胞特征丧失,模拟了衰老和糖尿病。使用 Got1 KO 细胞,我们表明抑制糖酵解或 Nmnat2 活性可以恢复β细胞功能和特征。
我们的研究表明,过度活跃的糖酵解是衰老和糖尿病β细胞的代谢特征,这可能是导致与年龄相关的β细胞功能障碍和细胞特征丧失的原因。我们建议抑制 Nmnat2 作为对抗与年龄相关的 T2D 的一种方法。