Suppr超能文献

利用临床记录和机器学习对足部检查结果进行自动分类

Automatic classification of foot examination findings using clinical notes and machine learning.

作者信息

Pakhomov Serguei V S, Hanson Penny L, Bjornsen Susan S, Smith Steven A

机构信息

Department of Pharmaceutical Care and Health Systems, University of Minnesota, Twin Cities, MN, USA.

出版信息

J Am Med Inform Assoc. 2008 Mar-Apr;15(2):198-202. doi: 10.1197/jamia.M2585. Epub 2007 Dec 20.

Abstract

We examine the feasibility of a machine learning approach to identification of foot examination (FE) findings from the unstructured text of clinical reports. A Support Vector Machine (SVM) based system was constructed to process the text of physical examination sections of in- and out-patient clinical notes to identify if the findings of structural, neurological, and vascular components of a FE revealed normal or abnormal findings or were not assessed. The system was tested on 145 randomly selected patients for each FE component using 10-fold cross validation. The accuracy was 80%, 87% and 88% for structural, neurological, and vascular component classifiers, respectively. Our results indicate that using machine learning to identify FE findings from clinical reports is a viable alternative to manual review and warrants further investigation. This application may improve quality and safety by providing inexpensive and scalable methodology for quality and risk factor assessments at the point of care.

摘要

我们研究了一种机器学习方法用于从临床报告的非结构化文本中识别足部检查(FE)结果的可行性。构建了一个基于支持向量机(SVM)的系统,用于处理门诊和住院临床记录中体格检查部分的文本,以确定FE的结构、神经和血管成分的检查结果是显示正常还是异常,或者未进行评估。使用10折交叉验证,对每个FE成分随机选择的145名患者进行了该系统测试。结构、神经和血管成分分类器的准确率分别为80%、87%和88%。我们的结果表明,使用机器学习从临床报告中识别FE结果是人工审查的可行替代方法,值得进一步研究。该应用可以通过提供用于即时护理时质量和风险因素评估的廉价且可扩展的方法,来提高质量和安全性。

相似文献

2
Quality performance measurement using the text of electronic medical records.使用电子病历文本进行质量绩效评估。
Med Decis Making. 2008 Jul-Aug;28(4):462-70. doi: 10.1177/0272989X08315253. Epub 2008 May 13.
4
Learning regular expressions for clinical text classification.学习正则表达式进行临床文本分类。
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):850-7. doi: 10.1136/amiajnl-2013-002411. Epub 2014 Feb 27.
10
Artificial intelligence for quality assurance in radiotherapy.人工智能在放射治疗中的质量保证。
Cancer Radiother. 2021 Oct;25(6-7):623-626. doi: 10.1016/j.canrad.2021.06.012. Epub 2021 Jun 24.

引用本文的文献

3
Artificial intelligence in foot and ankle surgery: current concepts.人工智能在足踝外科中的应用:当前的概念。
Orthopadie (Heidelb). 2023 Dec;52(12):1011-1016. doi: 10.1007/s00132-023-04426-x. Epub 2023 Aug 25.
4
Advancements in Artificial Intelligence for Foot and Ankle Surgery: A Systematic Review.人工智能在足踝外科手术中的进展:一项系统综述。
Foot Ankle Orthop. 2023 Feb 13;8(1):24730114221151079. doi: 10.1177/24730114221151079. eCollection 2023 Jan.
6
Automated Analysis of Public Health Laboratory Test Results.公共卫生实验室检测结果的自动化分析
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:393-402. eCollection 2020.
8
Classifying clinical notes with pain assessment using machine learning.使用机器学习对临床记录进行疼痛评估分类。
Med Biol Eng Comput. 2018 Jul;56(7):1285-1292. doi: 10.1007/s11517-017-1772-1. Epub 2017 Dec 26.

本文引用的文献

1
Quality performance measurement using the text of electronic medical records.使用电子病历文本进行质量绩效评估。
Med Decis Making. 2008 Jul-Aug;28(4):462-70. doi: 10.1177/0272989X08315253. Epub 2008 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验