Pakhomov Serguei V S, Hanson Penny L, Bjornsen Susan S, Smith Steven A
Department of Pharmaceutical Care and Health Systems, University of Minnesota, Twin Cities, MN, USA.
J Am Med Inform Assoc. 2008 Mar-Apr;15(2):198-202. doi: 10.1197/jamia.M2585. Epub 2007 Dec 20.
We examine the feasibility of a machine learning approach to identification of foot examination (FE) findings from the unstructured text of clinical reports. A Support Vector Machine (SVM) based system was constructed to process the text of physical examination sections of in- and out-patient clinical notes to identify if the findings of structural, neurological, and vascular components of a FE revealed normal or abnormal findings or were not assessed. The system was tested on 145 randomly selected patients for each FE component using 10-fold cross validation. The accuracy was 80%, 87% and 88% for structural, neurological, and vascular component classifiers, respectively. Our results indicate that using machine learning to identify FE findings from clinical reports is a viable alternative to manual review and warrants further investigation. This application may improve quality and safety by providing inexpensive and scalable methodology for quality and risk factor assessments at the point of care.
我们研究了一种机器学习方法用于从临床报告的非结构化文本中识别足部检查(FE)结果的可行性。构建了一个基于支持向量机(SVM)的系统,用于处理门诊和住院临床记录中体格检查部分的文本,以确定FE的结构、神经和血管成分的检查结果是显示正常还是异常,或者未进行评估。使用10折交叉验证,对每个FE成分随机选择的145名患者进行了该系统测试。结构、神经和血管成分分类器的准确率分别为80%、87%和88%。我们的结果表明,使用机器学习从临床报告中识别FE结果是人工审查的可行替代方法,值得进一步研究。该应用可以通过提供用于即时护理时质量和风险因素评估的廉价且可扩展的方法,来提高质量和安全性。