Suppr超能文献

Artificial neural network versus subjective scoring in predicting mortality in trauma patients.

作者信息

Pearl Adrian, Caspi Reuben, Bar-Or David

机构信息

Swedish Medical Center, Trauma Research Dept., Englewood, Colorado. USA.

出版信息

Stud Health Technol Inform. 2006;124:1019-24.

Abstract

OBJECTIVE

Current methods of trauma outcome prediction rely on clinical knowledge and experience. This makes the system a subjective score, because of intra-rater variability. This project aims to develop a neural network for predicting survival of trauma patients using standard, measured, physiological variables, and compare its predictive power with that obtained from current trauma scores.

METHODS

The project uses 7688 patients admitted to the Swedish Medical Center, Colorado, U.S.A. between the years 2000-2003 inclusive. Neural Network software was used for data analysis to determine the best network design on which to base the model to be tested. The model is created using a minimum number of variables to produce an effective outcome predicting score. Initial variables were based on the current variables used in calculating the Revised Trauma Score, replacing the Glasgow Coma Scale (GCS) with a modified motor component of the GCS. Additional variables are added to the model until a suitable model is achieved.

RESULTS

The best model used Multi-Layer Perceptrons, with 8 input variables, 5 hidden neurons and 1 output. It was trained on 5881 cases and tested independently on 1807 cases. The model was able to accurately predict 91% patient mortality.

CONCLUSIONS

An ANN developed using pre-hospital physiological variables without using subjective scores resulted in good mortality prediction when applied to a test set. Its performance was too sensitive and requires refinement.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验