Suppr超能文献

利用人工神经网络预测创伤患者住院期间的潜在并发症。

Using artificial neural networks to predict potential complications during trauma patients' hospitalization period.

作者信息

Pearl Adrian, Bar-Or David

机构信息

Trauma Research Department, Swedish Medical Center, Englewood, CO, USA.

出版信息

Stud Health Technol Inform. 2009;150:610-4.

Abstract

Complications during treatment of seriously injured trauma patients cause an increase in mortality rates, and increased treatment costs, including bed occupancy. Current methods treat those at risk, and include numbers of false positives. By finding a method to predict those at risk of the three most common recorded Trauma Registry complications, considerable savings in mortality and treatment costs could arise. Artificial Neural Networks (ANN) work well with classification problems using feed-forward/back propagation methodology. Using the National Trauma Data Bank (V6.2) data files, Tiberius Software created the ANN models. Best models were identified by their Gini co-efficient, ability to predict the complication outcome selected, and their Root Mean Squared Error (RMSE) scores. The model ensemble for the three major complications recorded in the registry were determined, variables ranked and model accuracy recorded. The basic ANN is fairly accurate for those likely to contract Acute Respiratory Disease Syndrome (ARDS) though with a high rate of false positives. The ANN ability to predict Ventilator Associated Pneumonia (VAP) is less effective, though better at producing fewer false positives. Predicting Urinary Tract Infections (UTI) cases is not good enough using these input variables. Both VAP and UTI relate to those aged over 55 years, while ARDS related more to those under 16 years. The models need improving.

摘要

严重创伤患者治疗期间的并发症会导致死亡率上升,以及治疗成本增加,包括床位占用成本。当前的方法是对有风险的患者进行治疗,其中存在一定数量的假阳性。通过找到一种方法来预测创伤登记中记录的三种最常见并发症的风险患者,有望在死亡率和治疗成本方面实现可观的节省。人工神经网络(ANN)在使用前馈/反向传播方法解决分类问题方面表现良好。利用国家创伤数据库(V6.2)的数据文件,Tiberius软件创建了人工神经网络模型。通过基尼系数、预测所选并发症结果的能力以及均方根误差(RMSE)分数来确定最佳模型。确定了登记中记录的三种主要并发症的模型集成,对变量进行了排名,并记录了模型准确性。基本的人工神经网络对于可能患急性呼吸窘迫综合征(ARDS)的患者相当准确,但假阳性率较高。人工神经网络预测呼吸机相关性肺炎(VAP)的能力较差,不过在产生较少假阳性方面表现较好。使用这些输入变量预测尿路感染(UTI)病例的效果不够理想。VAP和UTI都与55岁以上的患者有关,而ARDS更多地与16岁以下的患者有关。这些模型需要改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验