Suppr超能文献

优秀短跑运动员(赛犬,即家犬)后肢的功能解剖与肌肉力臂

Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).

作者信息

Williams S B, Wilson A M, Rhodes L, Andrews J, Payne R C

机构信息

Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool, UK.

出版信息

J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.

Abstract

We provide quantitative anatomical data on the muscle-tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance.

摘要

我们提供了关于精英短跑运动员——赛犬骨盆肢体的肌肉-肌腱结构和几何形状的定量解剖数据。具体而言,测量了肌肉质量、肌肉长度、肌束长度、羽状角和肌肉力臂。估计了肌肉的最大等长力和功率、关节处的最大肌肉扭矩以及肌腱应力和应变。我们将数据与已发表的关于一般犬种以及其他诸如马和野兔等奔跑型哺乳动物的数据进行了比较。赛犬的骨盆肢体有相对较大体积的髋伸肌,这可能是产生动力所必需的。按单位体重计算,一些骨盆肢体肌肉比不太特化的犬类中的肌肉相对更大,并且许多髋伸肌的肌束长度更长。据估计,赛犬的跗关节和髋关节周围能够产生巨大的伸肌力矩,从而实现高功率输出和快速加速的潜力。因此,赛犬拥有显著的适应性特征以增强短跑性能。

相似文献

1
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
3
Functional specialisation of the pelvic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):472-90. doi: 10.1111/j.1469-7580.2007.00704.x. Epub 2007 Mar 15.
4
Functional specialisation of the thoracic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):491-505. doi: 10.1111/j.1469-7580.2007.00703.x.
6
Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
J Anat. 2005 Jun;206(6):557-74. doi: 10.1111/j.1469-7580.2005.00420.x.
7
A comparison of the moment arms of pelvic limb muscles in horses bred for acceleration (Quarter Horse) and endurance (Arab).
J Anat. 2010 Jul;217(1):26-37. doi: 10.1111/j.1469-7580.2010.01241.x. Epub 2010 May 10.
8
Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus).
J Anat. 2007 Sep;211(3):313-24. doi: 10.1111/j.1469-7580.2007.00762.x. Epub 2007 Jun 30.
9
Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus).
J Anat. 2006 Dec;209(6):765-79. doi: 10.1111/j.1469-7580.2006.00658.x.
10
Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.
J Anat. 2011 Apr;218(4):363-74. doi: 10.1111/j.1469-7580.2010.01310.x. Epub 2010 Nov 10.

引用本文的文献

1
Functional measurement of canine muscular fitness: refinement and reliability of the Penn Vet Working Dog Center Sprint Test.
Front Vet Sci. 2023 Jul 3;10:1217201. doi: 10.3389/fvets.2023.1217201. eCollection 2023.
2
Early Development of Locomotion in the Term Piglet Model: Does Size Matter?
Integr Comp Biol. 2023 Sep 15;63(3):610-624. doi: 10.1093/icb/icad054.
4
Linking muscle architecture and function : conceptual or methodological limitations?
PeerJ. 2023 Apr 14;11:e15194. doi: 10.7717/peerj.15194. eCollection 2023.
5
Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats.
J Neurophysiol. 2022 Dec 1;128(6):1593-1616. doi: 10.1152/jn.00230.2022. Epub 2022 Nov 16.
6
Fore-Aft Asymmetry Improves the Stability of Trotting in the Transverse Plane: A Modeling Study.
Front Bioeng Biotechnol. 2022 Jun 3;10:807777. doi: 10.3389/fbioe.2022.807777. eCollection 2022.
7
From fibre to function: are we accurately representing muscle architecture and performance?
Biol Rev Camb Philos Soc. 2022 Aug;97(4):1640-1676. doi: 10.1111/brv.12856. Epub 2022 Apr 7.

本文引用的文献

1
Muscles of the pelvic limb; a study of the differences between bipeds and quadrupeds.
Anat Rec. 1947 Jul;98(3):337-46. doi: 10.1002/ar.1090980304.
2
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
3
Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.
J Anat. 2008 Feb;212(2):144-52. doi: 10.1111/j.1469-7580.2007.00848.x. Epub 2008 Jan 9.
4
Functional specialisation of the thoracic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):491-505. doi: 10.1111/j.1469-7580.2007.00703.x.
5
Functional specialisation of the pelvic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):472-90. doi: 10.1111/j.1469-7580.2007.00704.x. Epub 2007 Mar 15.
6
Morphological analysis of the hindlimb in apes and humans. II. Moment arms.
J Anat. 2006 Jun;208(6):725-42. doi: 10.1111/j.1469-7580.2006.00564.x.
7
Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.
J Anat. 2006 Jun;208(6):709-24. doi: 10.1111/j.1469-7580.2006.00563.x.
8
Biomechanics: no force limit on greyhound sprint speed.
Nature. 2005 Dec 8;438(7069):753-4. doi: 10.1038/438753a.
9
Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
J Anat. 2005 Jun;206(6):557-74. doi: 10.1111/j.1469-7580.2005.00420.x.
10
Training-specific muscle architecture adaptation after 5-wk training in athletes.
Med Sci Sports Exerc. 2003 Dec;35(12):2013-22. doi: 10.1249/01.MSS.0000099092.83611.20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验