Suppr超能文献

农药暴露与帕金森病的地理模型及生物标志物衍生指标

Geographic model and biomarker-derived measures of pesticide exposure and Parkinson's disease.

作者信息

Ritz Beate, Costello Sadie

机构信息

UCLA School of Public Health, Los Angeles, CA 90095-1772, USA.

出版信息

Ann N Y Acad Sci. 2006 Sep;1076:378-87. doi: 10.1196/annals.1371.074.

Abstract

For more than two decades, reports have suggested that pesticides and herbicides may be an etiologic factor in idiopathic Parkinson's disease (PD). To date, no clear associations with any specific pesticide have been demonstrated from epidemiological studies perhaps, in part, because methods of reliably estimating exposures are lacking. We tested the validity of a Geographic Information Systems (GIS)-based exposure assessment model that estimates potential environmental exposures at residences from pesticide applications to agricultural crops based on California Pesticide Use Reports (PUR). Using lipid-adjusted dichlorodiphenyldichloroethylene (DDE) serum levels as the "gold standard" for pesticide exposure, we conducted a validation study in a sample taken from an ongoing, population-based case-control study of PD in Central California. Residential, occupational, and other risk factor data were collected for 22 cases and 24 controls from Kern county, California. Environmental GIS-PUR-based organochlorine (OC) estimates were derived for each subject and compared to lipid-adjusted DDE serum levels. Relying on a linear regression model, we predicted log-transformed lipid-adjusted DDE serum levels. GIS-PUR-derived OC measure, body mass index, age, gender, mixing and loading pesticides by hand, and using pesticides in the home, together explained 47% of the DDE serum level variance (adjusted r(2) = 0.47). The specificity of using our environmental GIS-PUR-derived OC measures to identify those with high-serum DDE levels was reasonably good (87%). Our environmental GIS-PUR-based approach appears to provide a valid model for assessing residential exposures to agricultural pesticides.

摘要

二十多年来,有报告表明农药和除草剂可能是特发性帕金森病(PD)的一个病因。迄今为止,流行病学研究尚未证明与任何特定农药有明确关联,部分原因可能是缺乏可靠的暴露估计方法。我们测试了一种基于地理信息系统(GIS)的暴露评估模型的有效性,该模型根据加利福尼亚农药使用报告(PUR)估计住宅因农作物农药施用而产生的潜在环境暴露。以脂质调整后的二氯二苯二氯乙烯(DDE)血清水平作为农药暴露的“金标准”,我们在从加利福尼亚中部一项正在进行的基于人群的PD病例对照研究中抽取的样本中进行了一项验证研究。收集了来自加利福尼亚州克恩县的22例病例和24例对照的居住、职业和其他风险因素数据。为每个受试者得出基于环境GIS - PUR的有机氯(OC)估计值,并与脂质调整后的DDE血清水平进行比较。依靠线性回归模型,我们预测了经对数转换的脂质调整后的DDE血清水平。GIS - PUR得出的OC测量值、体重指数、年龄、性别、手工混合和装载农药以及在家中使用农药,共同解释了DDE血清水平方差的47%(调整后r² = 0.47)。使用我们基于环境GIS - PUR得出的OC测量值来识别高血清DDE水平者的特异性相当好(87%)。我们基于环境GIS - PUR的方法似乎为评估住宅对农业农药的暴露提供了一个有效的模型。

相似文献

引用本文的文献

本文引用的文献

8
Genetic polymorphisms in Parkinson's disease.
Neurotoxicology. 1998 Aug-Oct;19(4-5):635-43.
9
The Agricultural Health Study.农业健康研究。
Environ Health Perspect. 1996 Apr;104(4):362-9. doi: 10.1289/ehp.96104362.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验