Srinivasan Vivek J, Ko Tony H, Wojtkowski Maciej, Carvalho Mariana, Clermont Allen, Bursell Sven-Erik, Song Qin Hui, Lem Janis, Duker Jay S, Schuman Joel S, Fujimoto James G
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5522-8. doi: 10.1167/iovs.06-0195.
To demonstrate high-speed, ultrahigh-resolution optical coherence tomography (OCT) for noninvasive, in vivo, three-dimensional imaging of the retina in rat and mouse models.
A high-speed, ultrahigh-resolution OCT system using spectral, or Fourier domain, detection has been developed for small animal retinal imaging. Imaging is performed with a contact lens and postobjective scanning. An axial image resolution of 2.8 mum is achieved with a spectrally broadband superluminescent diode light source with a bandwidth of approximately 150 nm at approximately 900-nm center wavelength. Imaging can be performed at 24,000 axial scans per second, which is approximately 100 times faster than previous ultrahigh-resolution OCT systems. High-definition and three-dimensional retinal imaging is performed in vivo in mouse and rat models.
High-speed, ultrahigh-resolution OCT enabled high-definition, high transverse pixel density imaging of the murine retina and visualization of all major intraretinal layers. Raster scan protocols enabled three-dimensional volumetric imagingand comprehensive retinal segmentation algorithms allowed measurement of retinal layers. An OCT fundus image, akin to a fundus photograph was generated by axial summation of three-dimensional OCT data, thus enabling precise registration of OCT measurements to retinal fundus features.
High-speed, ultrahigh-resolution OCT enables imaging of retinal architectural morphology in small animal models. OCT fundus images allow precise registration of OCT images and repeated measurements with respect to retinal fundus features. Three-dimensional OCT imaging enables visualization and quantification of retinal structure, which promises to allow repeated, noninvasive measurements to track disease progression, thereby reducing the need for killing the animal for histology. This capability can accelerate basic research studies in rats and mice and their translation into clinical patient care.
展示用于大鼠和小鼠模型视网膜无创、体内三维成像的高速、超高分辨率光学相干断层扫描(OCT)技术。
已开发出一种采用光谱或傅里叶域检测的高速、超高分辨率OCT系统用于小动物视网膜成像。成像通过接触镜和物镜后扫描进行。使用中心波长约为900nm、带宽约为150nm的光谱宽带超发光二极管光源,可实现2.8μm的轴向图像分辨率。成像速度可达每秒24000次轴向扫描,比之前的超高分辨率OCT系统快约100倍。在小鼠和大鼠模型中进行了体内高清和三维视网膜成像。
高速、超高分辨率OCT实现了小鼠视网膜的高清、高横向像素密度成像,并能显示所有主要的视网膜内各层。光栅扫描协议实现了三维容积成像,全面的视网膜分割算法可测量视网膜各层。通过对三维OCT数据进行轴向求和生成了类似于眼底照片的OCT眼底图像,从而能够将OCT测量结果精确地与视网膜眼底特征进行配准。
高速、超高分辨率OCT能够对小动物模型中的视网膜结构形态进行成像。OCT眼底图像可实现OCT图像的精确配准以及相对于视网膜眼底特征的重复测量。三维OCT成像能够可视化和量化视网膜结构,有望实现重复的无创测量以跟踪疾病进展,从而减少为进行组织学检查而处死动物的需求。这种能力可加速大鼠和小鼠的基础研究及其向临床患者护理的转化。