Srinivasan Vivek J, Adler Desmond C, Chen Yueli, Gorczynska Iwona, Huber Robert, Duker Jay S, Schuman Joel S, Fujimoto James G
Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Invest Ophthalmol Vis Sci. 2008 Nov;49(11):5103-10. doi: 10.1167/iovs.08-2127. Epub 2008 Jul 24.
To demonstrate ultrahigh-speed optical coherence tomography (OCT) imaging of the retina and optic nerve head at 249,000 axial scans per second and a wavelength of 1060 nm. To investigate methods for visualization of the retina, choroid, and optic nerve using high-density sampling enabled by improved imaging speed.
A swept-source OCT retinal imaging system operating at a speed of 249,000 axial scans per second was developed. Imaging of the retina, choroid, and optic nerve were performed. Display methods such as speckle reduction, slicing along arbitrary planes, en face visualization of reflectance from specific retinal layers, and image compounding were investigated.
High-definition and three-dimensional (3D) imaging of the normal retina and optic nerve head were performed. Increased light penetration at 1060 nm enabled improved visualization of the choroid, lamina cribrosa, and sclera. OCT fundus images and 3D visualizations were generated with higher pixel density and less motion artifacts than standard spectral/Fourier domain OCT. En face images enabled visualization of the porous structure of the lamina cribrosa, nerve fiber layer, choroid, photoreceptors, RPE, and capillaries of the inner retina.
Ultrahigh-speed OCT imaging of the retina and optic nerve head at 249,000 axial scans per second is possible. The improvement of approximately 5 to 10x in imaging speed over commercial spectral/Fourier domain OCT technology enables higher density raster scan protocols and improved performance of en face visualization methods. The combination of the longer wavelength and ultrahigh imaging speed enables excellent visualization of the choroid, sclera, and lamina cribrosa.
展示每秒249,000次轴向扫描且波长为1060 nm的视网膜和视神经乳头的超高速光学相干断层扫描(OCT)成像。研究利用提高成像速度实现的高密度采样来可视化视网膜、脉络膜和视神经的方法。
开发了一种以每秒249,000次轴向扫描速度运行的扫频源OCT视网膜成像系统。对视网膜、脉络膜和视神经进行成像。研究了诸如散斑减少、沿任意平面切片、特定视网膜层反射率的表面可视化以及图像合成等显示方法。
对正常视网膜和视神经乳头进行了高清和三维(3D)成像。1060 nm处光穿透的增加使得脉络膜、筛板和巩膜的可视化得到改善。与标准光谱/傅里叶域OCT相比,生成的OCT眼底图像和3D可视化具有更高的像素密度和更少的运动伪影。表面图像能够可视化筛板、神经纤维层、脉络膜、光感受器、视网膜色素上皮(RPE)和视网膜内层毛细血管的多孔结构。
每秒249,000次轴向扫描的视网膜和视神经乳头的超高速OCT成像是可行的。与商业光谱/傅里叶域OCT技术相比,成像速度提高了约5至10倍,这使得更高密度的光栅扫描协议和表面可视化方法的性能得到改善。更长波长与超高速成像速度的结合能够出色地可视化脉络膜、巩膜和筛板。