Araya Roberto, Eisenthal Kenneth B, Yuste Rafael
Howard Hughes Medical Institute and Departments of Biological Sciences and Chemistry, Columbia University, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804. doi: 10.1073/pnas.0609225103. Epub 2006 Nov 28.
In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate the potential function of this electrical filtering, we used two-photon uncaging of glutamate and compared the integration of electrical signals in spines vs. dendritic shafts from basal dendrites of mouse layer 5 pyramidal neurons. Uncaging potentials onto spines summed linearly, whereas potentials on dendritic shafts reduced each other's effect. Linear integration of spines was maintained regardless of the amplitude of the response, distance between spines (as close as < 2 microm), distance of the spines to the soma, dendritic diameter, or spine neck length. Our findings indicate that spines serve as electrical isolators to prevent input interaction, and thus generate a linear arithmetic of excitatory inputs. Linear integration could be an essential feature of cortical and other spine-laden circuits.
在哺乳动物的皮层中,大多数兴奋性输入发生在树突棘上,而避开了树突干。尽管树突棘在生化层面上隔离了输入信号,但无棘神经元也能够实现生化分隔;因此,树突棘可能具有额外的功能。我们最近发现,树突棘颈部能够过滤进出树突棘的膜电位。为了研究这种电过滤的潜在功能,我们利用双光子解笼谷氨酸技术,比较了小鼠第5层锥体神经元基底树突上树突棘与树突干中电信号的整合情况。解笼谷氨酸产生的电位在树突棘上呈线性叠加,而在树突干上的电位则会相互削弱彼此的作用。无论反应幅度、树突棘之间的距离(近至<2微米)、树突棘到胞体的距离、树突直径或树突棘颈部长度如何,树突棘的线性整合都能保持。我们的研究结果表明,树突棘充当电隔离器以防止输入信号相互作用,从而产生兴奋性输入的线性运算。线性整合可能是皮层及其他富含树突棘的神经回路的一个基本特征。