Suppr超能文献

树突棘的电分隔。

Electrical compartmentalization in dendritic spines.

机构信息

Departments of Biological Sciences and Neuroscience, Howard Hughes Medical Institute, and Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.

出版信息

Annu Rev Neurosci. 2013 Jul 8;36:429-49. doi: 10.1146/annurev-neuro-062111-150455. Epub 2013 May 29.

Abstract

Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those of dendrites during action potentials (APs), spines must sustain higher depolarizations than do dendritic shafts during excitatory postsynaptic potentials (EPSPs). Synaptic potentials are likely amplified at the spine head and then reduced as they invade the dendrite through the spine neck. These electrical changes, probably due to a combination of passive and active mechanisms, may prevent the saturation of dendrites by the joint activation of many inputs, influence dendritic integration, and contribute to rapid synaptic plasticity. The electrical properties of spines could enable neural circuits to harness a high connectivity, implementing a "synaptic democracy," where each input can be individually integrated, tallied, and modified in order to generate emergent functional states.

摘要

中枢神经系统中的大多数兴奋性输入都与树突棘接触,而避免与树突干接触,因此树突棘对于神经元来说一定起着关键作用。最近的数据表明,除了增强连接性和隔离突触生物化学外,树突棘还可以表现为与它们的母树突独立的电隔室。现在越来越清楚的是,尽管在动作电位 (AP) 期间,树突棘经历的电压与树突相似,但在兴奋性突触后电位 (EPSP) 期间,树突棘必须比树突干维持更高的去极化。突触电位可能在棘头处被放大,然后通过棘突颈部侵入树突时被减小。这些电变化可能是由于被动和主动机制的结合,这可能防止了由于许多输入的联合激活而使树突饱和,影响树突整合,并有助于快速突触可塑性。棘突的电特性可以使神经回路利用高连接性,实现“突触民主”,其中每个输入都可以单独整合、计数和修改,以产生新兴的功能状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验