Ozturk Mustafa C, Xu Dongming, Príncipe José C
Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.
Neural Comput. 2007 Jan;19(1):111-38. doi: 10.1162/neco.2007.19.1.111.
The design of echo state network (ESN) parameters relies on the selection of the maximum eigenvalue of the linearized system around zero (spectral radius). However, this procedure does not quantify in a systematic manner the performance of the ESN in terms of approximation error. This article presents a functional space approximation framework to better understand the operation of ESNs and proposes an information-theoretic metric, the average entropy of echo states, to assess the richness of the ESN dynamics. Furthermore, it provides an interpretation of the ESN dynamics rooted in system theory as families of coupled linearized systems whose poles move according to the input signal dynamics. With this interpretation, a design methodology for functional approximation is put forward where ESNs are designed with uniform pole distributions covering the frequency spectrum to abide by the richness metric, irrespective of the spectral radius. A single bias parameter at the ESN input, adapted with the modeling error, configures the ESN spectral radius to the input-output joint space. Function approximation examples compare the proposed design methodology versus the conventional design.
回声状态网络(ESN)参数的设计依赖于围绕零点的线性化系统的最大特征值(谱半径)的选择。然而,该过程并未以系统的方式量化ESN在逼近误差方面的性能。本文提出了一个泛函空间逼近框架,以更好地理解ESN的运行,并提出了一种信息论度量,即回声状态的平均熵,来评估ESN动力学的丰富性。此外,它还提供了一种基于系统理论的ESN动力学解释,即将其视为耦合线性化系统族,其极点根据输入信号动力学移动。基于这种解释,提出了一种函数逼近的设计方法,其中ESN的设计采用覆盖频谱的均匀极点分布,以符合丰富性度量,而不考虑谱半径。ESN输入处的单个偏置参数根据建模误差进行调整,将ESN谱半径配置到输入-输出联合空间。函数逼近示例比较了所提出的设计方法与传统设计方法。