基于高频传感器的脑生理信号的多变量建模与预测:机器学习方法的叙述性综述

Multivariate Modelling and Prediction of High-Frequency Sensor-Based Cerebral Physiologic Signals: Narrative Review of Machine Learning Methodologies.

作者信息

Vakitbilir Nuray, Islam Abrar, Gomez Alwyn, Stein Kevin Y, Froese Logan, Bergmann Tobias, Sainbhi Amanjyot Singh, McClarty Davis, Raj Rahul, Zeiler Frederick A

机构信息

Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.

Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada.

出版信息

Sensors (Basel). 2024 Dec 20;24(24):8148. doi: 10.3390/s24248148.

Abstract

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies. Computational models play an essential role in linking sensor-derived signals to the underlying physiological state of the brain. Multivariate machine learning models have proven particularly effective in this domain, capturing intricate relationships among multiple variables simultaneously and enabling the accurate modeling of cerebral physiologic signals. These models facilitate the development of advanced diagnostic and prognostic tools, promote patient-specific interventions, and improve therapeutic outcomes. Additionally, machine learning models offer great flexibility, allowing different models to be combined synergistically to address complex challenges in sensor-based data analysis. Ensemble learning techniques, which aggregate predictions from diverse models, further enhance predictive accuracy and robustness. This review explores the use of multivariate machine learning models in cerebral physiology as a whole, with an emphasis on sensor-derived signals related to hemodynamics, cerebral oxygenation, metabolism, and other modalities such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) where applicable. It will detail the operational principles, mathematical foundations, and clinical implications of these models, providing a deeper understanding of their significance in monitoring cerebral function.

摘要

由于各种疾病中血流动力学调节经常受到干扰,因此使用侵入性和非侵入性传感器组合监测脑氧合和代谢至关重要。这些传感器生成连续的高频数据流,包括颅内压(ICP)和脑灌注压(CPP),提供对脑功能的实时洞察。分析这些信号对于理解复杂的脑过程、识别细微模式和检测异常至关重要。计算模型在将传感器衍生信号与脑的潜在生理状态联系起来方面发挥着重要作用。多变量机器学习模型在该领域已被证明特别有效,它能同时捕捉多个变量之间的复杂关系,并实现对脑生理信号的准确建模。这些模型有助于开发先进的诊断和预后工具,促进针对患者的干预措施,并改善治疗效果。此外,机器学习模型具有很大的灵活性,允许不同模型协同组合以应对基于传感器的数据分析中的复杂挑战。集成学习技术汇总来自不同模型的预测,进一步提高预测准确性和鲁棒性。本综述全面探讨多变量机器学习模型在脑生理学中的应用,重点关注与血流动力学、脑氧合、代谢以及适用时的其他模式(如脑电图(EEG)和功能近红外光谱(fNIRS))相关的传感器衍生信号。它将详细介绍这些模型的操作原理、数学基础和临床意义,以便更深入地理解它们在监测脑功能方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b24/11679405/4af50a23fe6b/sensors-24-08148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索