Choi Sunhee, Vastag Livia, Leung Chin-Hin, Beard Adam M, Knowles Darcy E, Larrabee James A
Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, USA.
Inorg Chem. 2006 Dec 11;45(25):10108-14. doi: 10.1021/ic061243g.
The kinetics of redox reactions of the PtIV complexes trans-Pt(d,l)(1,2-(NH2)2C6H10)Cl4 ([PtIVCl4(dach)]) and Pt(NH2CH2CH2NH2)Cl4 ([PtIVCl4(en)]) with 5'- and 3'-dGMP (G) have been studied. These redox reactions involve substitution followed by an inner-sphere electron transfer. The substitution is catalyzed by PtII and follows the classic Basolo-Pearson PtII-catalyzed PtIV-substitution mechanism. We found that the substitutution rates depend on the steric hindrance of PtII, G, and PtIV with the least sterically hindered PtII complex catalyzing at the highest rate. 3'-dGMP undergoes substitution faster than 5'-dGMP, and [PtIVCl4(en)] substitutes faster than [PtIVCl4(dach)]. The enthalpies of activation of the substitution, DeltaH double dagger s, of 3'-dGMP is only 70% greater than that of 5'-dGMP (50.4 vs 30.7 kJ mol(-1)), but the entropy of activation of the substitution, DeltaS double dagger s, of 3'-dGMP is much greater than that of 5'-dGMP (-59.4 vs -129.5 J K(-1) mol(-1)), indicating that steric hindrance plays a major role in the substitution. The enthalpy of activation of electron transfer, DeltaH double dagger e, of 3'-dGMP is smaller than that of 5'-dGMP (88.8 vs 137.8 kJ mol(-1)). The entropy of activation of electron transfer, DeltaS double dagger e, of 3'-dGMP is negative, but that of 5'-dGMP is positive (-27.8 vs +128.8 J K-1 mol-1). The results indicate that 5'-hydroxo has less rotational barrier than 5'-phosphate, but it is geometrically unfavorable for internal electron transfer. The electron-transfer rate also depends on the reduction potential of PtIV. Because of its higher reduction potential, [PtIVCl4(dach)] has a faster electron transfer than [PtIVCl4(en)].
已对反式四价铂配合物反式 - 铂(d,l)(1,2 - (NH₂)₂C₆H₁₀)Cl₄([PtIVCl₄(dach)])和铂(NH₂CH₂CH₂NH₂)Cl₄([PtIVCl₄(en)])与5'-和3'-脱氧鸟苷一磷酸(G)的氧化还原反应动力学进行了研究。这些氧化还原反应涉及取代反应,随后是内球电子转移。取代反应由二价铂催化,并遵循经典的巴索洛 - 皮尔逊二价铂催化的四价铂取代机制。我们发现取代速率取决于二价铂、G和四价铂的空间位阻,空间位阻最小的二价铂配合物催化速率最高。3'-脱氧鸟苷一磷酸的取代速度比5'-脱氧鸟苷一磷酸快,并且[PtIVCl₄(en)]的取代速度比[PtIVCl₄(dach)]快。3'-脱氧鸟苷一磷酸取代反应的活化焓ΔH‡仅比5'-脱氧鸟苷一磷酸的大70%(50.4对30.7 kJ·mol⁻¹),但3'-脱氧鸟苷一磷酸取代反应的活化熵ΔS‡比5'-脱氧鸟苷一磷酸的大得多(-59.4对-129.5 J·K⁻¹·mol⁻¹),这表明空间位阻在取代反应中起主要作用。3'-脱氧鸟苷一磷酸电子转移的活化焓ΔH‡e比5'-脱氧鸟苷一磷酸的小(88.8对137.8 kJ·mol⁻¹)。3'-脱氧鸟苷一磷酸电子转移的活化熵ΔS‡e为负,而5'-脱氧鸟苷一磷酸为正(-27.8对 +128.8 J·K⁻¹·mol⁻¹)。结果表明,5'-羟基的旋转势垒比5'-磷酸小,但在几何结构上不利于内部电子转移。电子转移速率也取决于四价铂的还原电位。由于其还原电位较高,[PtIVCl₄(dach)]的电子转移比[PtIVCl₄(en)]快。