Suppr超能文献

离子通道门控中的扩散模型。扩展至激动剂激活的离子通道。

Diffusion model in ion channel gating. Extension to agonist-activated ion channels.

作者信息

Oswald R E, Millhauser G L, Carter A A

机构信息

Department of Pharmacology, N.Y.S. College of Veterinary Medicine, Cornell University, Ithaca 14853.

出版信息

Biophys J. 1991 May;59(5):1136-42. doi: 10.1016/S0006-3495(91)82328-1.

Abstract

Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.

摘要

此前,我们描述了一个将离子通道门控视为离散扩散问题的模型。在高激动剂浓度下的激动剂激活通道的情况下,该模型预测,单通道记录的关闭寿命概率密度函数近似于指数为-3/2的幂律(米尔豪泽,G.L.,E.E.萨尔彼得,和R.E.奥斯瓦尔德。1988a。美国国家科学院院刊。85: 1503 - 1507)。这一预测与在高激动剂浓度下从多个配体门控通道得出的分布一致(米尔豪泽,G.L.,E.E.萨尔彼得,和R.E.奥斯瓦尔德。1988b。生物物理学杂志。54: 1165 - 1168),但并未描述低激活剂浓度下离子通道的行为。我们在此研究该模型的一个扩展,以纳入激动剂结合步骤。这个扩展模型与BC3H - 1烟碱型乙酰胆碱受体在三个数量级范围内变化的激动剂浓度所产生的关闭时间分布一致。

相似文献

1
Diffusion model in ion channel gating. Extension to agonist-activated ion channels.
Biophys J. 1991 May;59(5):1136-42. doi: 10.1016/S0006-3495(91)82328-1.
2
Percolation model of ionic channel dynamics.
Biophys J. 1990 Mar;57(3):681-4. doi: 10.1016/S0006-3495(90)82588-1.
3
Fractional diffusion modeling of ion channel gating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051915. doi: 10.1103/PhysRevE.70.051915. Epub 2004 Nov 24.
6
Inversion of Markov processes to determine rate constants from single-channel data.
Biophys J. 1997 Sep;73(3):1382-94. doi: 10.1016/S0006-3495(97)78170-0.
7
Activation of a nicotinic acetylcholine receptor.
Biophys J. 1984 Jan;45(1):175-85. doi: 10.1016/S0006-3495(84)84146-6.
8
Function of nicotinic acetylcholine receptors.
Soc Gen Physiol Ser. 1987;41:19-42.
9
Single-channel acetylcholine receptor kinetics.
Biophys J. 1984 Jan;45(1):153-63. doi: 10.1016/S0006-3495(84)84144-2.
10
Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor.
Nature. 1991 Oct 31;353(6347):846-9. doi: 10.1038/353846a0.

引用本文的文献

1
Gating of maxi channels observed from pseudo-phase portraits.
Am J Physiol Cell Physiol. 2013 Mar 1;304(5):C450-7. doi: 10.1152/ajpcell.00378.2012. Epub 2013 Jan 2.
2
Quantitative analysis of DNA-looping kinetics from tethered particle motion experiments.
Methods Enzymol. 2010;475:199-220. doi: 10.1016/S0076-6879(10)75009-6.
4
Single ion channel models incorporating aggregation and time interval omission.
Biophys J. 1993 Feb;64(2):357-74. doi: 10.1016/S0006-3495(93)81375-4.
5
Protein dynamics and 1/f noise.
Biophys J. 1992 Aug;63(2):594-8. doi: 10.1016/S0006-3495(92)81603-X.

本文引用的文献

1
Glutamate receptor channel kinetics: the effect of glutamate concentration.
Biophys J. 1988 Jan;53(1):39-52. doi: 10.1016/S0006-3495(88)83064-9.
3
Estimating kinetic constants from single channel data.
Biophys J. 1983 Aug;43(2):207-23. doi: 10.1016/S0006-3495(83)84341-0.
5
Sodium channels and gating currents.
Physiol Rev. 1981 Jul;61(3):644-83. doi: 10.1152/physrev.1981.61.3.644.
6
Characterization of a unique muscle cell line.
J Cell Biol. 1974 May;61(2):398-413. doi: 10.1083/jcb.61.2.398.
7
Protein states and proteinquakes.
Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000-4. doi: 10.1073/pnas.82.15.5000.
8
Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin.
Science. 1987 Jan 16;235(4786):318-21. doi: 10.1126/science.3798113.
9
Structural and electronic requirements for potent agonists at a nicotinic receptor.
Eur J Pharmacol. 1986 Jan 14;120(1):127-31. doi: 10.1016/0014-2999(86)90652-7.
10
Model selection: reliability and bias.
Biophys J. 1989 Feb;55(2):379-81. doi: 10.1016/S0006-3495(89)82816-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验