Oswald R E, Millhauser G L, Carter A A
Department of Pharmacology, N.Y.S. College of Veterinary Medicine, Cornell University, Ithaca 14853.
Biophys J. 1991 May;59(5):1136-42. doi: 10.1016/S0006-3495(91)82328-1.
Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.
此前,我们描述了一个将离子通道门控视为离散扩散问题的模型。在高激动剂浓度下的激动剂激活通道的情况下,该模型预测,单通道记录的关闭寿命概率密度函数近似于指数为-3/2的幂律(米尔豪泽,G.L.,E.E.萨尔彼得,和R.E.奥斯瓦尔德。1988a。美国国家科学院院刊。85: 1503 - 1507)。这一预测与在高激动剂浓度下从多个配体门控通道得出的分布一致(米尔豪泽,G.L.,E.E.萨尔彼得,和R.E.奥斯瓦尔德。1988b。生物物理学杂志。54: 1165 - 1168),但并未描述低激活剂浓度下离子通道的行为。我们在此研究该模型的一个扩展,以纳入激动剂结合步骤。这个扩展模型与BC3H - 1烟碱型乙酰胆碱受体在三个数量级范围内变化的激动剂浓度所产生的关闭时间分布一致。