Suppr超能文献

一种基于知识的蛋白质折叠移动集。

A knowledge-based move set for protein folding.

作者信息

Chen William W, Yang Jae Shick, Shakhnovich Eugene I

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02318, USA.

出版信息

Proteins. 2007 Feb 15;66(3):682-8. doi: 10.1002/prot.21237.

Abstract

The free energy landscape of protein folding is rugged, occasionally characterized by compact, intermediate states of low free energy. In computational folding, this landscape leads to trapped, compact states with incorrect secondary structure. We devised a residue-specific, protein backbone move set for efficient sampling of protein-like conformations in computational folding simulations. The move set is based on the selection of a small set of backbone dihedral angles, derived from clustering dihedral angles sampled from experimental structures. We show in both simulated annealing and replica exchange Monte Carlo (REMC) simulations that the knowledge-based move set, when compared with a conventional move set, shows statistically significant improved ability at overcoming kinetic barriers, reaching deeper energy minima, and achieving correspondingly lower RMSDs to native structures. The new move set is also more efficient, being able to reach low energy states considerably faster. Use of this move set in determining the energy minimum state and for calculating thermodynamic quantities is discussed.

摘要

蛋白质折叠的自由能景观崎岖不平,偶尔会出现低自由能的紧凑中间状态。在计算折叠中,这种景观会导致具有错误二级结构的被困紧凑状态。我们设计了一种基于残基的蛋白质主链移动集,用于在计算折叠模拟中高效采样类似蛋白质的构象。该移动集基于从实验结构中采样的二面角聚类中选择的一小组主链二面角。我们在模拟退火和副本交换蒙特卡罗(REMC)模拟中均表明,与传统移动集相比,基于知识的移动集在克服动力学障碍、达到更深的能量最小值以及实现与天然结构相应更低的均方根偏差方面具有统计学上显著提高的能力。新的移动集也更高效,能够更快地达到低能状态。本文还讨论了在确定能量最低状态和计算热力学量时使用此移动集的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验