Suppr超能文献

手部操作运动的协调结构有助于对其进行识别。

Coordinative structure of manipulative hand-movements facilitates their recognition.

作者信息

Dejmal Iris, Zacksenhouse Miriam

机构信息

Sensory-Motor Integration Laboratory, Faculty of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.

出版信息

IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2455-63. doi: 10.1109/TBME.2006.883795.

Abstract

Manipulative hand movements involve coordinated movements of the fingers to manipulate an object within the hand, and are classified as either simultaneous or sequential. Simultaneous hand movements are characterized by single coordinated patterns of digit movements, while sequential hand movements involve sequences of such patterns. Here, we investigate the extent of the coordination among 15 hand-joints during simultaneous hand movements, and demonstrate that it leads to a concise representation that facilitates movement recognition. Principal component analysis (PCA), performed in the 15-dimensional (15-D) joint-space, indicates that the first principal-component captures more than 98% of the variability in individual hand movements. Consequently, the first principal direction provides a 15-D feature-vector that describes the underlying-coordination and can be used for automatic recognition. We evaluated this recognition strategy on a set of nine simultaneous hand-movements using a database of six users, each performing six sessions. A dedicated classifier for each user resulted in recognition rates of 97.0 +/- 4.7% during testing, while a single generic classifier achieved 95.2 +/- 2.5% recognition rates. We conclude that the suggested feature-vector captures the invariant structure of simultaneous hand-movements, facilitates their recognition, and may provide insight into motor planning.

摘要

手部操控动作涉及手指的协同运动以操控手中的物体,可分为同时性动作或连续性动作。同时性手部动作的特征是手指运动的单一协同模式,而连续性手部动作则涉及此类模式的序列。在此,我们研究了同时性手部动作期间15个手部关节之间的协调程度,并证明它会产生一种简洁的表示形式,便于动作识别。在15维(15-D)关节空间中进行的主成分分析(PCA)表明,第一主成分捕获了个体手部动作中超过98%的变异性。因此,第一主方向提供了一个15维特征向量,该向量描述了潜在的协调性,可用于自动识别。我们使用一个包含六名用户的数据库,对一组九个同时性手部动作评估了这种识别策略,每名用户进行六个会话。针对每个用户的专用分类器在测试期间的识别率为97.0 +/- 4.7%,而单个通用分类器的识别率为95.2 +/- 2.5%。我们得出结论,所建议的特征向量捕获了同时性手部动作的不变结构,便于其识别,并可能为运动规划提供见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验